1] Department of Chemistry, University of California, Berkeley D54 Hildebrand Hall, Berkeley, California 94720, USA [2] Division of Chemical Sciences, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA [3] Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan.
1] Department of Chemistry, University of California, Berkeley D54 Hildebrand Hall, Berkeley, California 94720, USA [2] Division of Materials Science, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA.
Nat Commun. 2015 Mar 10;6:6538. doi: 10.1038/ncomms7538.
Carbon dioxide capture and use as a carbon feedstock presents both environmental and industrial benefits. Here we report the discovery of a hybrid oxide catalyst comprising manganese oxide nanoparticles supported on mesoporous spinel cobalt oxide, which catalyses the conversion of carbon dioxide to methanol at high yields. In addition, carbon-carbon bond formation is observed through the production of ethylene. We document the existence of an active interface between cobalt oxide surface layers and manganese oxide nanoparticles by using X-ray absorption spectroscopy and electron energy-loss spectroscopy in the scanning transmission electron microscopy mode. Through control experiments, we find that the catalyst's chemical nature and architecture are the key factors in enabling the enhanced methanol synthesis and ethylene production. To demonstrate the industrial applicability, the catalyst is also run under high conversion regimes, showing its potential as a substitute for current methanol synthesis technologies.
二氧化碳的捕获和利用作为碳原料具有环境和工业效益。在这里,我们报告了一种混合氧化物催化剂的发现,该催化剂由负载在介孔尖晶石型氧化钴上的氧化锰纳米粒子组成,可在高收率下催化二氧化碳转化为甲醇。此外,通过生成乙烯观察到碳-碳键的形成。我们通过在扫描透射电子显微镜模式下使用 X 射线吸收光谱和电子能量损失光谱记录了氧化钴表面层和氧化锰纳米粒子之间的活性界面的存在。通过控制实验,我们发现催化剂的化学性质和结构是实现增强甲醇合成和乙烯生产的关键因素。为了证明其工业适用性,我们还在高转化率条件下对催化剂进行了测试,表明其有潜力替代当前的甲醇合成技术。