Suppr超能文献

TssM T6SS蛋白片段与骆驼科纳米抗体复合物的产生、结晶及X射线衍射分析

Production, crystallization and X-ray diffraction analysis of a complex between a fragment of the TssM T6SS protein and a camelid nanobody.

作者信息

Nguyen Van Son, Spinelli Silvia, Desmyter Aline, Le Thi Thu Hang, Kellenberger Christine, Cascales Eric, Cambillau Christian, Roussel Alain

机构信息

Architecture et Fonction des Macromolécules Biologiques, CNRS, Campus de Luminy, Case 932, 13288 Marseille, France.

Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, CNRS and Aix-Marseille Université, 31 Chemin Joseph Aiguier, 13402 Marseille, France.

出版信息

Acta Crystallogr F Struct Biol Commun. 2015 Mar;71(Pt 3):266-71. doi: 10.1107/S2053230X15000709. Epub 2015 Feb 19.

Abstract

The type VI secretion system (T6SS) is a machine evolved by Gram-negative bacteria to deliver toxin effectors into target bacterial or eukaryotic cells. The T6SS is functionally and structurally similar to the contractile tail of the Myoviridae family of bacteriophages and can be viewed as a syringe anchored to the bacterial membrane by a transenvelope complex. The membrane complex is composed of three proteins: the TssM and TssL inner membrane components and the TssJ outer membrane lipoprotein. The TssM protein is central as it interacts with both TssL and TssJ, therefore linking the membranes. Using controlled trypsinolysis, a 32.4 kDa C-terminal fragment of enteroaggregative Escherichia coli TssM (TssM32Ct) was purified. A nanobody obtained from llama immunization, nb25, exhibited subnanomolar affinity for TssM32Ct. Crystals of the TssM32Ct-nb25 complex were obtained and diffracted to 1.9 Å resolution. The crystals belonged to space group P64, with unit-cell parameters a = b = 95.23, c = 172.95 Å. Molecular replacement with a model nanobody indicated the presence of a dimer of TssM32Ct-nb25 in the asymmetric unit.

摘要

VI型分泌系统(T6SS)是革兰氏阴性菌进化出的一种机制,用于将毒素效应蛋白传递到靶细菌细胞或真核细胞中。T6SS在功能和结构上类似于肌尾噬菌体科噬菌体的收缩尾,可被视为通过跨膜复合物锚定在细菌膜上的注射器。膜复合物由三种蛋白质组成:内膜成分TssM和TssL以及外膜脂蛋白TssJ。TssM蛋白至关重要,因为它与TssL和TssJ都相互作用,从而连接了细胞膜。通过可控的胰蛋白酶消化,纯化出了肠聚集性大肠杆菌TssM的一个32.4 kDa的C端片段(TssM32Ct)。从羊驼免疫中获得的一个纳米抗体nb25,对TssM32Ct表现出亚纳摩尔亲和力。获得了TssM32Ct-nb25复合物的晶体,并衍射到1.9 Å分辨率。这些晶体属于空间群P64,晶胞参数a = b = 95.23,c = 172.95 Å。用一个模型纳米抗体进行分子置换表明,在不对称单位中存在TssM32Ct-nb25二聚体。

相似文献

1
Production, crystallization and X-ray diffraction analysis of a complex between a fragment of the TssM T6SS protein and a camelid nanobody.
Acta Crystallogr F Struct Biol Commun. 2015 Mar;71(Pt 3):266-71. doi: 10.1107/S2053230X15000709. Epub 2015 Feb 19.
2
Inhibition of type VI secretion by an anti-TssM llama nanobody.
PLoS One. 2015 Mar 26;10(3):e0122187. doi: 10.1371/journal.pone.0122187. eCollection 2015.
5
and high-resolution cryo-EM structure of a bacterial type VI secretion system membrane complex.
EMBO J. 2019 May 15;38(10). doi: 10.15252/embj.2018100886. Epub 2019 Mar 15.
6
Role and Recruitment of the TagL Peptidoglycan-Binding Protein during Type VI Secretion System Biogenesis.
J Bacteriol. 2019 May 22;201(12). doi: 10.1128/JB.00173-19. Print 2019 Jun 15.
7
Biogenesis and structure of a type VI secretion membrane core complex.
Nature. 2015 Jul 30;523(7562):555-60. doi: 10.1038/nature14667. Epub 2015 Jul 22.

引用本文的文献

1
Small but Mighty: Nanobodies in the Fight Against Infectious Diseases.
Biomolecules. 2025 Apr 23;15(5):610. doi: 10.3390/biom15050610.
2
Antiviral activity of intracellular nanobodies targeting the influenza virus RNA-polymerase core.
PLoS Pathog. 2024 Jun 14;20(6):e1011642. doi: 10.1371/journal.ppat.1011642. eCollection 2024 Jun.
4
Camelid nanobodies used as crystallization chaperones for different constructs of PorM, a component of the type IX secretion system from Porphyromonas gingivalis.
Acta Crystallogr F Struct Biol Commun. 2017 May 1;73(Pt 5):286-293. doi: 10.1107/S2053230X17005969. Epub 2017 Apr 26.
5
Biogenesis and structure of a type VI secretion membrane core complex.
Nature. 2015 Jul 30;523(7562):555-60. doi: 10.1038/nature14667. Epub 2015 Jul 22.
6
Inhibition of type VI secretion by an anti-TssM llama nanobody.
PLoS One. 2015 Mar 26;10(3):e0122187. doi: 10.1371/journal.pone.0122187. eCollection 2015.

本文引用的文献

1
VgrG, Tae, Tle, and beyond: the versatile arsenal of Type VI secretion effectors.
Trends Microbiol. 2014 Sep;22(9):498-507. doi: 10.1016/j.tim.2014.06.004. Epub 2014 Jul 17.
2
Architecture and assembly of the Type VI secretion system.
Biochim Biophys Acta. 2014 Aug;1843(8):1664-73. doi: 10.1016/j.bbamcr.2014.03.018. Epub 2014 Mar 26.
3
A general protocol for the generation of Nanobodies for structural biology.
Nat Protoc. 2014 Mar;9(3):674-93. doi: 10.1038/nprot.2014.039. Epub 2014 Feb 27.
4
Type VI secretion system effectors: poisons with a purpose.
Nat Rev Microbiol. 2014 Feb;12(2):137-48. doi: 10.1038/nrmicro3185. Epub 2014 Jan 2.
5
A view to a kill: the bacterial type VI secretion system.
Cell Host Microbe. 2014 Jan 15;15(1):9-21. doi: 10.1016/j.chom.2013.11.008. Epub 2013 Dec 11.
6
Structural basis for antibody recognition in the receptor-binding domains of toxins A and B from Clostridium difficile.
J Biol Chem. 2014 Jan 24;289(4):2331-43. doi: 10.1074/jbc.M113.505917. Epub 2013 Dec 5.
7
The Type VI secretion system - a widespread and versatile cell targeting system.
Res Microbiol. 2013 Jul-Aug;164(6):640-54. doi: 10.1016/j.resmic.2013.03.017. Epub 2013 Mar 27.
8
Viral infection modulation and neutralization by camelid nanobodies.
Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):E1371-9. doi: 10.1073/pnas.1301336110. Epub 2013 Mar 25.
9
Nanobodies: natural single-domain antibodies.
Annu Rev Biochem. 2013;82:775-97. doi: 10.1146/annurev-biochem-063011-092449. Epub 2013 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验