Kathuria Preetleen, Sharma Purshotam, Abendong Minette N, Wetmore Stacey D
Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4.
Biochemistry. 2015 Apr 21;54(15):2414-28. doi: 10.1021/bi501484m. Epub 2015 Apr 8.
Aristolochic acids (AAI and AAII), produced by the Aristolochiaceae family of plants, are classified as group I (human) carcinogens by the International Agency for Research on Cancer. These acids are metabolized in cells to yield aristolactams (ALI and ALII, respectively), which further form bulky adducts with the purine nucleobases. Specifically, the adenine lesions are more persistent in cells and have been associated with chronic renal diseases and related carcinogenesis. To understand the structural basis of the nephrotoxicity induced by AAs, the ALI-N(6)-dA and ALII-N(6)-dA lesions are systematically studied using computational methods. Density functional theory calculations indicate that the aristolactam moiety intrinsically prefers a planar conformation with respect to adenine. Nucleoside and nucleotide models suggest that the anti and syn orientations about the glycosidic bond are isoenergetic for both adducts. Molecular dynamics simulations and free energy calculations reveal that the anti base-displaced intercalated conformation is the most stable conformer for both types of AL-N(6)-dA adducted DNA, which agrees with previous experimental work on the ALII-N(6)-dA adduct and thereby validates our approach. Interestingly, this conformer differs from the dominant conformations adopted by other N6-linked adenine lesions, including those derived from polycyclic aromatic hydrocarbons. Furthermore, the second most stable syn base-displaced intercalated conformation lies closer in energy to the anti base-displaced intercalated conformation for ALI-N(6)-dA compared to ALII-N(6)-dA. This indicates that a mixture of conformations may be detectable for ALI-N(6)-dA in DNA. If this enhanced conformational flexibility of double-stranded DNA persists when bound to a lesion-bypass polymerase, this provides a possible structural explanation for the previously observed greater nephrotoxic potential for the ALI versus ALII-N(6)-dA adduct. In addition, the structural characteristics of the preferred conformations of adducted DNA explain the resistance of these adducts to repair and thereby add to our current understanding of the toxicity of AAs within living cells.
马兜铃酸(AAI和AAII)由马兜铃科植物产生,被国际癌症研究机构列为第I组(人类)致癌物。这些酸在细胞中代谢生成马兜铃内酰胺(分别为ALI和ALII),后者进一步与嘌呤核碱基形成大分子加合物。具体而言,腺嘌呤损伤在细胞中更持久,并与慢性肾病及相关致癌作用有关。为了解马兜铃酸诱导肾毒性的结构基础,使用计算方法对ALI-N(6)-dA和ALII-N(6)-dA损伤进行了系统研究。密度泛函理论计算表明,马兜铃内酰胺部分相对于腺嘌呤本质上更喜欢平面构象。核苷和核苷酸模型表明,两种加合物糖苷键周围的反式和顺式取向能量相同。分子动力学模拟和自由能计算表明,反式碱基移位插入构象是两种类型的AL-N(6)-dA加合DNA最稳定的构象,这与之前关于ALII-N(6)-dA加合物的实验工作一致,从而验证了我们的方法。有趣的是,这种构象不同于其他N6-连接腺嘌呤损伤所采用的主要构象,包括那些来自多环芳烃的损伤。此外,与ALII-N(6)-dA相比,ALI-N(6)-dA的第二稳定的顺式碱基移位插入构象在能量上更接近反式碱基移位插入构象。这表明DNA中的ALI-N(6)-dA可能检测到多种构象的混合物。如果双链DNA与损伤旁路聚合酶结合时这种增强的构象灵活性持续存在,这为之前观察到的ALI相对于ALII-N(6)-dA加合物更大的肾毒性潜力提供了一种可能的结构解释。此外,加合DNA首选构象的结构特征解释了这些加合物对修复的抗性,从而加深了我们目前对活细胞内马兜铃酸毒性的理解。