Suzuki Mami, Nakabayashi Ryo, Ogata Yoshiyuki, Sakurai Nozomu, Tokimatsu Toshiaki, Goto Susumu, Suzuki Makoto, Jasinski Michal, Martinoia Enrico, Otagaki Shungo, Matsumoto Shogo, Saito Kazuki, Shiratake Katsuhiro
Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan (Mam.S., S.O., S.M., K.Sh.);National Institute of Vegetables and Tea Science, Taketoyo 470-2351, Japan (Mam.S.);RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan (R.N., Mak.S., K.Sa.);Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Naka, Sakai 599-8531, Japan (Y.O.);Kazusa DNA Research Institute, Kisarazu 292-0818, Japan (N.S.);Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan (T.T., S.G.);Database Center for Life Science, Research Organization of Information and Systems, Kashiwa 277-0871, Japan (T.T.);Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 60-637 Poznan, Poland (M.J.);Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 61-704 Poznan, Poland (M.J.);Institute of Plant Biology, University of Zurich, Zurich 8008, Switzerland (E.M.); andGraduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan (K.Sa.).
Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan (Mam.S., S.O., S.M., K.Sh.);National Institute of Vegetables and Tea Science, Taketoyo 470-2351, Japan (Mam.S.);RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan (R.N., Mak.S., K.Sa.);Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Naka, Sakai 599-8531, Japan (Y.O.);Kazusa DNA Research Institute, Kisarazu 292-0818, Japan (N.S.);Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan (T.T., S.G.);Database Center for Life Science, Research Organization of Information and Systems, Kashiwa 277-0871, Japan (T.T.);Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 60-637 Poznan, Poland (M.J.);Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 61-704 Poznan, Poland (M.J.);Institute of Plant Biology, University of Zurich, Zurich 8008, Switzerland (E.M.); andGraduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan (K.Sa.)
Plant Physiol. 2015 May;168(1):47-59. doi: 10.1104/pp.114.254375. Epub 2015 Mar 11.
Grape (Vitis vinifera) accumulates various polyphenolic compounds, which protect against environmental stresses, including ultraviolet-C (UV-C) light and pathogens. In this study, we looked at the transcriptome and metabolome in grape berry skin after UV-C irradiation, which demonstrated the effectiveness of omics approaches to clarify important traits of grape. We performed transcriptome analysis using a genome-wide microarray, which revealed 238 genes up-regulated more than 5-fold by UV-C light. Enrichment analysis of Gene Ontology terms showed that genes encoding stilbene synthase, a key enzyme for resveratrol synthesis, were enriched in the up-regulated genes. We performed metabolome analysis using liquid chromatography-quadrupole time-of-flight mass spectrometry, and 2,012 metabolite peaks, including unidentified peaks, were detected. Principal component analysis using the peaks showed that only one metabolite peak, identified as resveratrol, was highly induced by UV-C light. We updated the metabolic pathway map of grape in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and in the KaPPA-View 4 KEGG system, then projected the transcriptome and metabolome data on a metabolic pathway map. The map showed specific induction of the resveratrol synthetic pathway by UV-C light. Our results showed that multiomics is a powerful tool to elucidate the accumulation mechanisms of secondary metabolites, and updated systems, such as KEGG and KaPPA-View 4 KEGG for grape, can support such studies.
葡萄(欧亚葡萄)积累了多种多酚类化合物,这些化合物可抵御包括紫外线-C(UV-C)光和病原体在内的环境胁迫。在本研究中,我们观察了UV-C照射后葡萄浆果表皮的转录组和代谢组,这证明了组学方法在阐明葡萄重要特性方面的有效性。我们使用全基因组微阵列进行了转录组分析,结果显示有238个基因被UV-C光上调了5倍以上。基因本体术语的富集分析表明,编码白藜芦醇合成关键酶的白藜芦醇合酶的基因在上调基因中富集。我们使用液相色谱-四极杆飞行时间质谱进行了代谢组分析,检测到了2012个代谢物峰,包括未鉴定的峰。使用这些峰进行的主成分分析表明,只有一个被鉴定为白藜芦醇的代谢物峰被UV-C光高度诱导。我们更新了京都基因与基因组百科全书(KEGG)数据库和KaPPA-View 4 KEGG系统中的葡萄代谢途径图,然后将转录组和代谢组数据投影到代谢途径图上。该图显示了UV-C光对白藜芦醇合成途径的特异性诱导。我们的结果表明,多组学是阐明次生代谢物积累机制的有力工具,而更新后的系统,如用于葡萄的KEGG和KaPPA-View 4 KEGG,可以支持此类研究。