Suppr超能文献

磷酸苏氨酸218是SR45.1在拟南芥花瓣发育调控中发挥功能所必需的。

Phosphothreonine 218 is required for the function of SR45.1 in regulating flower petal development in Arabidopsis.

作者信息

Zhang Xiao-Ning, Mo Cecilia, Garrett Wesley M, Cooper Bret

机构信息

a Department of Biology; Saint Bonaventure University; Saint Bonaventure, NY USA.

出版信息

Plant Signal Behav. 2014;9(7):e29134. doi: 10.4161/psb.29134.

Abstract

RNA splicing is crucial to the production of mature mRNAs (mRNA). In Arabidopsis thaliana, the protein Arginine/Serine-rich 45 (SR45) acts as an RNA splicing activator and initiates the spliceosome assembly. SR45 is alternatively spliced into 2 isoforms. Isoform 1 (SR45.1) plays an important role in the flower petal development whereas isoform 2 (SR45.2) is important for root growth. In this study, we used immunoprecipitation to isolate an SR45.1-GFP fusion protein from transgenic plants complementing a null mutant, sr45-1. Mass spectrometry suggested a single phosphorylation event in a peptide from the alternatively spliced region unique to SR45.1. Substituting alanine for threonine 218, a candidate site for phosphorylation, did not complement the sr45-1 mutant with narrow flower petals whereas substituting aspartic acid or glutamic acid for threonine 218 did complement the sr45-1 mutant. Mass spectrometry also revealed that other proteins involved in the spliceosome co-precipitated with SR45.1, and RT-qPCR revealed that phosphorylation of threonine 218 promotes the function of SR45.1 in promoting the constitutive splicing of SR30 mRNA. This is the first demonstration of a specific phosphorylation site that differentially regulates the function of a plant splicing activator in physiologically and morphologically distinct plant tissues.

摘要

RNA剪接对于成熟mRNA(信使核糖核酸)的产生至关重要。在拟南芥中,富含精氨酸/丝氨酸的蛋白45(SR45)作为一种RNA剪接激活剂,启动剪接体组装。SR45可选择性剪接为2种异构体。异构体1(SR45.1)在花瓣发育中起重要作用,而异构体2(SR45.2)对根的生长很重要。在本研究中,我们利用免疫沉淀从互补无效突变体sr45 - 1的转基因植物中分离出SR45.1 - GFP融合蛋白。质谱分析表明,在SR45.1特有的选择性剪接区域的一个肽段中存在单个磷酸化事件。将苏氨酸218替换为丙氨酸(一个潜在的磷酸化位点)不能互补具有狭窄花瓣的sr45 - 1突变体,而将苏氨酸218替换为天冬氨酸或谷氨酸则能互补sr45 - 1突变体。质谱分析还显示,其他参与剪接体的蛋白与SR45.1共沉淀,逆转录定量聚合酶链反应(RT - qPCR)显示,苏氨酸218的磷酸化促进SR45.1在促进SR30 mRNA组成型剪接中的功能。这是首次证明一个特定的磷酸化位点在生理和形态上不同的植物组织中差异调节植物剪接激活剂的功能。

相似文献

2
Two alternatively spliced isoforms of the Arabidopsis SR45 protein have distinct roles during normal plant development.
Plant Physiol. 2009 Jul;150(3):1450-8. doi: 10.1104/pp.109.138180. Epub 2009 Apr 29.
3
Interactions of SR45, an SR-like protein, with spliceosomal proteins and an intronic sequence: insights into regulated splicing.
Plant J. 2012 Sep;71(6):936-47. doi: 10.1111/j.1365-313X.2012.05042.x. Epub 2012 Jun 28.
4
An SC35-like protein and a novel serine/arginine-rich protein interact with Arabidopsis U1-70K protein.
J Biol Chem. 1999 Dec 17;274(51):36428-38. doi: 10.1074/jbc.274.51.36428.
5
Regulation of plant developmental processes by a novel splicing factor.
PLoS One. 2007 May 30;2(5):e471. doi: 10.1371/journal.pone.0000471.
6
The Arabidopsis splicing regulator SR45 confers salt tolerance in a splice isoform-dependent manner.
Plant Mol Biol. 2019 Jul;100(4-5):379-390. doi: 10.1007/s11103-019-00864-4. Epub 2019 Apr 9.
10
ATP, phosphorylation and transcription regulate the mobility of plant splicing factors.
J Cell Sci. 2006 Sep 1;119(Pt 17):3527-38. doi: 10.1242/jcs.03144. Epub 2006 Aug 8.

引用本文的文献

3
How alternative splicing changes the properties of plant proteins.
Quant Plant Biol. 2022 Jul 1;3:e14. doi: 10.1017/qpb.2022.9. eCollection 2022.
4
Alternative splicing in ABA signaling during seed germination.
Front Plant Sci. 2023 Mar 16;14:1144990. doi: 10.3389/fpls.2023.1144990. eCollection 2023.
5
Toward a systems view on RNA-binding proteins and associated RNAs in plants: Guilt by association.
Plant Cell. 2023 May 29;35(6):1708-1726. doi: 10.1093/plcell/koac345.

本文引用的文献

1
Stalled spliceosomes are a signal for RNAi-mediated genome defense.
Cell. 2013 Feb 28;152(5):957-68. doi: 10.1016/j.cell.2013.01.046. Epub 2013 Feb 14.
2
Interactions of SR45, an SR-like protein, with spliceosomal proteins and an intronic sequence: insights into regulated splicing.
Plant J. 2012 Sep;71(6):936-47. doi: 10.1111/j.1365-313X.2012.05042.x. Epub 2012 Jun 28.
3
Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis.
Genome Res. 2012 Jun;22(6):1184-95. doi: 10.1101/gr.134106.111. Epub 2012 Mar 5.
4
The splicing factor SR45 affects the RNA-directed DNA methylation pathway in Arabidopsis.
Epigenetics. 2012 Jan 1;7(1):29-33. doi: 10.4161/epi.7.1.18782.
5
Phosphorylation site localization in peptides by MALDI MS/MS and the Mascot Delta Score.
Anal Bioanal Chem. 2012 Jan;402(1):249-60. doi: 10.1007/s00216-011-5469-2. Epub 2011 Oct 25.
7
Relative, label-free protein quantitation: spectral counting error statistics from nine replicate MudPIT samples.
J Am Soc Mass Spectrom. 2010 Sep;21(9):1534-46. doi: 10.1016/j.jasms.2010.05.001. Epub 2010 May 6.
8
Extensive coupling of alternative splicing of pre-mRNAs of serine/arginine (SR) genes with nonsense-mediated decay.
New Phytol. 2010 Jan;185(1):83-9. doi: 10.1111/j.1469-8137.2009.03065.x. Epub 2009 Oct 23.
9
Two alternatively spliced isoforms of the Arabidopsis SR45 protein have distinct roles during normal plant development.
Plant Physiol. 2009 Jul;150(3):1450-8. doi: 10.1104/pp.109.138180. Epub 2009 Apr 29.
10
GAMETOPHYTIC FACTOR 1, involved in pre-mRNA splicing, is essential for megagametogenesis and embryogenesis in Arabidopsis.
J Integr Plant Biol. 2009 Mar;51(3):261-71. doi: 10.1111/j.1744-7909.2008.00783.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验