Suppr超能文献

多丝结构和侧向相互作用在细胞骨架蛋白和组装体动力学中的作用。

The role of multifilament structures and lateral interactions in dynamics of cytoskeleton proteins and assemblies.

机构信息

Rice University, Department of Chemistry and Center for Theoretical Biological Physics, Houston, Texas 77005, United States.

出版信息

J Phys Chem B. 2015 Apr 2;119(13):4653-61. doi: 10.1021/acs.jpcb.5b01219. Epub 2015 Mar 23.

Abstract

Microtubules and actin filaments are biopolymer molecules that are major components of cytoskeleton networks in biological cells. They play important roles in supporting fundamental cellular processes such as cell division, signaling, locomotion, and intracellular transport. In cells, cytoskeleton proteins function under nonequilibrium conditions that are powered by hydrolysis of adenosine triphosphate (ATP) or guanosine triphosphate (GTP) molecules attached to them. Although these biopolymers are critically important for all cellular processes, the mechanisms that govern their complex dynamics and force generation remain not well explained. One of the most difficult fundamental issues is to understand how different components of cytoskeleton proteins interact together. We develop an approximate theoretical approach for analyzing complex processes in cytoskeleton proteins that takes into account the multifilament structure, lateral interactions between parallel protofilaments, and the most relevant biochemical transitions during the biopolymer growth. It allows us to fully evaluate collective dynamic properties of cytoskeleton filaments as well as the effect of external forces on them. It is found that for the case of strong lateral interactions the stall force of the multifilament protein is a linear function of the number of protofilaments. However, for weak lateral interactions, deviations from the linearity are observed. We also show that stall forces, mean velocities, and dispersions are increasing functions of the lateral interactions. Physical-chemical explanations of these phenomena are presented. Our theoretical predictions are supported by extensive Monte Carlo computer simulations.

摘要

微管和肌动蛋白丝是生物细胞骨架网络的主要组成部分,是生物聚合物分子。它们在支持细胞分裂、信号转导、运动和细胞内运输等基本细胞过程中发挥着重要作用。在细胞中,细胞骨架蛋白在由附着在它们上的三磷酸腺苷(ATP)或三磷酸鸟苷(GTP)分子的水解提供动力的非平衡条件下发挥作用。尽管这些生物聚合物对所有细胞过程都至关重要,但控制它们复杂动力学和力产生的机制仍未得到很好的解释。其中最困难的基本问题之一是了解细胞骨架蛋白的不同成分如何相互作用。我们开发了一种近似的理论方法来分析细胞骨架蛋白中的复杂过程,该方法考虑了多丝结构、平行原丝之间的侧向相互作用以及生物聚合物生长过程中最重要的生化转变。它使我们能够全面评估细胞骨架丝的集体动态特性以及外部力对它们的影响。结果表明,对于强侧向相互作用的情况,多丝蛋白的失速力是原丝数量的线性函数。然而,对于弱侧向相互作用,观察到偏离线性。我们还表明,失速力、平均速度和分散度是侧向相互作用的递增函数。提出了对这些现象的物理化学解释。我们的理论预测得到了广泛的蒙特卡罗计算机模拟的支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验