Hou Dong, Wang Shikuan, Wang Rulin, Ye LvZhou, Xu RuiXue, Zheng Xiao, Yan YiJing
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
Department of Physics, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China.
J Chem Phys. 2015 Mar 14;142(10):104112. doi: 10.1063/1.4914514.
Several recent advancements for the hierarchical equations of motion (HEOM) approach are reported. First, we propose an a priori estimate for the optimal number of basis functions for the reservoir memory decomposition. Second, we make use of the sparsity of auxiliary density operators (ADOs) and propose two ansatzs to screen out all the intrinsic zero ADO elements. Third, we propose a new truncation scheme by utilizing the time derivatives of higher-tier ADOs. These novel techniques greatly reduce the memory cost of the HEOM approach, and thus enhance its efficiency and applicability. The improved HEOM approach is applied to simulate the coherent dynamics of Aharonov-Bohm double quantum dot interferometers. Quantitatively accurate dynamics is obtained for both noninteracting and interacting quantum dots. The crucial role of the quantum phase for the magnitude of quantum coherence and quantum entanglement is revealed.
报告了运动层次方程(HEOM)方法的几个最新进展。首先,我们为库记忆分解的基函数最优数量提出了一种先验估计。其次,我们利用辅助密度算符(ADO)的稀疏性,提出了两种假设来筛选出所有固有的零 ADO 元素。第三,我们通过利用高阶 ADO 的时间导数提出了一种新的截断方案。这些新技术大大降低了 HEOM 方法的内存成本,从而提高了其效率和适用性。改进后的 HEOM 方法被应用于模拟阿哈罗诺夫 - 玻姆双量子点干涉仪的相干动力学。对于非相互作用和相互作用的量子点,都获得了定量准确的动力学结果。揭示了量子相位对量子相干和量子纠缠大小的关键作用。