Suppr超能文献

黏膜炎:病理生物学与管理

Mucositis: pathobiology and management.

作者信息

Villa Alessandro, Sonis Stephen T

机构信息

Division of Oral Medicine and Dentistry, Brigham and Women's Hospital Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA.

出版信息

Curr Opin Oncol. 2015 May;27(3):159-64. doi: 10.1097/CCO.0000000000000180.

Abstract

PURPOSE OF REVIEW

Oral mucositis remains a frequent debilitating toxicity associated with drug and radiation regimens used to treat cancer. This review highlights the recent understanding of the biological basis, risk factors for, and management for oral mucositis.

RECENT FINDINGS

Prevalence and incidence data for mucositis are inconsistent and often underreported. The pathogenesis of mucositis encompasses a sequence of biological events possibly influenced by the oral microbiome and environment. Despite its frequency and severity, there is currently no effective treatment available for the majority of patients at risk. However, with the better understanding of the pathogenesis of mucositis a number of new drugs and biological agents are under investigation. Genome-wide risk prediction tools will allow the identification of patients at risk of developing mucositis.

SUMMARY

Oral mucositis is a common complication of cancer treatment that may negatively impact the patient's cancer treatment outcome. Despite its frequency and consequences, the lack of effective interventions has frustrated patients and caregivers. Fortunately, a broad range of mechanistically targeted compounds are being developed.

摘要

综述目的

口腔黏膜炎仍然是与用于治疗癌症的药物和放疗方案相关的常见使人衰弱的毒性反应。本综述重点介绍了对口腔黏膜炎的生物学基础、危险因素及管理的最新认识。

最新发现

黏膜炎的患病率和发病率数据不一致,且常常报告不足。黏膜炎的发病机制包括一系列可能受口腔微生物群和环境影响的生物学事件。尽管其发生率高且严重,但目前对于大多数有风险的患者尚无有效的治疗方法。然而,随着对黏膜炎发病机制的深入了解,一些新药和生物制剂正在研究中。全基因组风险预测工具将有助于识别有发生黏膜炎风险的患者。

总结

口腔黏膜炎是癌症治疗的常见并发症,可能会对患者的癌症治疗结果产生负面影响。尽管其发生率高且后果严重,但缺乏有效的干预措施让患者和护理人员感到沮丧。幸运的是,正在研发一系列具有机制针对性的化合物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验