Suppr超能文献

细胞生长与分裂过程中的细菌肌动蛋白和微管蛋白同源物。

Bacterial actin and tubulin homologs in cell growth and division.

作者信息

Busiek Kimberly K, Margolin William

机构信息

Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St., Houston, TX 77030, USA.

Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St., Houston, TX 77030, USA.

出版信息

Curr Biol. 2015 Mar 16;25(6):R243-R254. doi: 10.1016/j.cub.2015.01.030.

Abstract

In contrast to the elaborate cytoskeletal machines harbored by eukaryotic cells, such as mitotic spindles, cytoskeletal structures detectable by typical negative stain electron microscopy are generally absent from bacterial cells. As a result, for decades it was thought that bacteria lacked cytoskeletal machines. Revolutions in genomics and fluorescence microscopy have confirmed the existence not only of smaller-scale cytoskeletal structures in bacteria, but also of widespread functional homologs of eukaryotic cytoskeletal proteins. The presence of actin, tubulin, and intermediate filament homologs in these relatively simple cells suggests that primitive cytoskeletons first arose in bacteria. In bacteria such as Escherichia coli, homologs of tubulin and actin directly interact with each other and are crucial for coordinating cell growth and division. The function and direct interactions between these proteins will be the focus of this review.

摘要

与真核细胞所拥有的复杂细胞骨架机器(如有丝分裂纺锤体)不同,细菌细胞通常没有典型负染电子显微镜可检测到的细胞骨架结构。因此,几十年来人们一直认为细菌缺乏细胞骨架机器。基因组学和荧光显微镜技术的革命不仅证实了细菌中存在较小规模的细胞骨架结构,还证实了真核细胞骨架蛋白广泛存在功能同源物。在这些相对简单的细胞中存在肌动蛋白、微管蛋白和中间丝同源物,这表明原始细胞骨架最初起源于细菌。在诸如大肠杆菌等细菌中,微管蛋白和肌动蛋白的同源物相互直接作用,对于协调细胞生长和分裂至关重要。这些蛋白质之间的功能及直接相互作用将是本综述的重点。

相似文献

1
Bacterial actin and tubulin homologs in cell growth and division.
Curr Biol. 2015 Mar 16;25(6):R243-R254. doi: 10.1016/j.cub.2015.01.030.
2
A dynamic bacterial cytoskeleton.
Trends Cell Biol. 2003 Nov;13(11):577-83. doi: 10.1016/j.tcb.2003.09.005.
3
Bacterial ancestry of actin and tubulin.
Curr Opin Microbiol. 2001 Dec;4(6):634-8. doi: 10.1016/s1369-5274(01)00262-4.
4
Structural/functional homology between the bacterial and eukaryotic cytoskeletons.
Curr Opin Cell Biol. 2004 Feb;16(1):24-31. doi: 10.1016/j.ceb.2003.11.005.
5
The role of cytoskeletal elements in shaping bacterial cells.
J Microbiol Biotechnol. 2015 Mar;25(3):307-16. doi: 10.4014/jmb.1409.09047.
6
The bacterial cytoskeleton.
Microbiol Mol Biol Rev. 2006 Sep;70(3):729-54. doi: 10.1128/MMBR.00017-06.
7
Tubulin and FtsZ structures: functional and therapeutic implications.
Bioessays. 1998 Jul;20(7):523-7. doi: 10.1002/(SICI)1521-1878(199807)20:7<523::AID-BIES1>3.0.CO;2-L.
9
The tubulin ancestor, FtsZ, draughtsman, designer and driving force for bacterial cytokinesis.
J Mol Biol. 2002 Apr 26;318(2):219-36. doi: 10.1016/S0022-2836(02)00024-4.
10
Diversification and specialization of the bacterial cytoskeleton.
Curr Opin Cell Biol. 2007 Feb;19(1):5-12. doi: 10.1016/j.ceb.2006.12.010. Epub 2006 Dec 18.

引用本文的文献

1
EzrA promotes Z-ring formation through interaction of its QNR motif with FtsA.
J Bacteriol. 2025 Jul 24;207(7):e0012525. doi: 10.1128/jb.00125-25. Epub 2025 Jul 3.
2
Frequent and asymmetric cell division in endosymbiotic bacteria of cockroaches.
Appl Environ Microbiol. 2024 Oct 23;90(10):e0146624. doi: 10.1128/aem.01466-24. Epub 2024 Sep 18.
3
Novel MreB inhibitors with antibacterial activity against Gram (-) bacteria.
Med Chem Res. 2022 Oct;31(10):1679-1704. doi: 10.1007/s00044-022-02967-y. Epub 2022 Sep 14.
4
Multiple conserved states characterize the twist landscape of the bacterial actin homolog MreB.
Comput Struct Biotechnol J. 2022 Oct 7;20:5838-5846. doi: 10.1016/j.csbj.2022.10.008. eCollection 2022.
5
Cinnamaldehyde derivatives act as antimicrobial agents against through the inhibition of cell division.
Front Microbiol. 2022 Aug 29;13:967949. doi: 10.3389/fmicb.2022.967949. eCollection 2022.
6
Evolution of longitudinal division in multicellular bacteria of the Neisseriaceae family.
Nat Commun. 2022 Aug 22;13(1):4853. doi: 10.1038/s41467-022-32260-w.
7
How Does the Spatial Confinement of FtsZ to a Membrane Surface Affect Its Polymerization Properties and Function?
Front Microbiol. 2022 May 3;13:757711. doi: 10.3389/fmicb.2022.757711. eCollection 2022.
8
Subcellular Dynamics of a Conserved Bacterial Polar Scaffold Protein.
Genes (Basel). 2022 Jan 30;13(2):278. doi: 10.3390/genes13020278.
9
Functional Characterization of the Cell Division Gene Cluster of the Wall-less Bacterium .
Front Microbiol. 2021 Sep 13;12:695572. doi: 10.3389/fmicb.2021.695572. eCollection 2021.

本文引用的文献

1
Role of the FtsA C terminus as a switch for polymerization and membrane association.
mBio. 2014 Nov 25;5(6):e02221. doi: 10.1128/mBio.02221-14.
2
3D-SIM super-resolution of FtsZ and its membrane tethers in Escherichia coli cells.
Biophys J. 2014 Oct 21;107(8):L17-L20. doi: 10.1016/j.bpj.2014.08.024.
3
Structure and function of a spectrin-like regulator of bacterial cytokinesis.
Nat Commun. 2014 Nov 18;5:5421. doi: 10.1038/ncomms6421.
5
An intrinsically disordered linker plays a critical role in bacterial cell division.
Semin Cell Dev Biol. 2015 Jan;37:3-10. doi: 10.1016/j.semcdb.2014.09.017. Epub 2014 Oct 13.
8
Failsafe mechanisms couple division and DNA replication in bacteria.
Curr Biol. 2014 Sep 22;24(18):2149-2155. doi: 10.1016/j.cub.2014.07.055. Epub 2014 Aug 28.
9
SlmA antagonism of FtsZ assembly employs a two-pronged mechanism like MinCD.
PLoS Genet. 2014 Jul 31;10(7):e1004460. doi: 10.1371/journal.pgen.1004460. eCollection 2014 Jul.
10
Large-scale filament formation inhibits the activity of CTP synthetase.
Elife. 2014 Jul 16;3:e03638. doi: 10.7554/eLife.03638.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验