Smith-Collins Adam P R, Luyt Karen, Heep Axel, Kauppinen Risto A
Neonatal Neuroscience, St Michael's Hospital, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom.
CRIC Bristol and School of Experimental Psychology, University of Bristol, Bristol, United Kingdom.
Hum Brain Mapp. 2015 Jul;36(7):2483-94. doi: 10.1002/hbm.22786. Epub 2015 Mar 18.
Understanding how spatially remote brain regions interact to form functional brain networks, and how these develop during the neonatal period, provides fundamental insights into normal brain development, and how mechanisms of brain disorder and recovery may function in the immature brain. A key imaging tool in characterising functional brain networks is examination of T2*-weighted fMRI signal during rest (resting state fMRI, rs-fMRI). The majority of rs-fMRI studies have concentrated on slow signal fluctuations occurring at <0.1 Hz, even though neuronal rhythms, and haemodynamic responses to these fluctuate more rapidly, and there is emerging evidence for crucial information about functional brain connectivity occurring more rapidly than these limits. The characterisation of higher frequency components has been limited by the sampling frequency achievable with standard T2* echoplanar imaging (EPI) sequences. We describe patterns of neonatal functional brain network connectivity derived using accelerated T2*-weighted EPI MRI. We acquired whole brain rs-fMRI data, at subsecond sampling frequency, from preterm infants at term equivalent age and compared this to rs-fMRI data acquired with standard EPI acquisition protocol. We provide the first evidence that rapid rs-fMRI acquisition in neonates, and adoption of an extended frequency range for analysis, allows identification of a substantial proportion of signal power residing above 0.2 Hz. We thereby describe changes in brain connectivity associated with increasing maturity which are not evident using standard rs-fMRI protocols. Development of optimised neonatal fMRI protocols, including use of high speed acquisition sequences, is crucial for understanding the physiology and pathophysiology of the developing brain.
了解空间上相距较远的脑区如何相互作用以形成功能性脑网络,以及这些网络在新生儿期如何发育,有助于深入理解正常脑发育过程,以及脑疾病和恢复机制在未成熟大脑中可能如何发挥作用。表征功能性脑网络的一个关键成像工具是在静息状态下检查T2加权功能磁共振成像信号(静息态功能磁共振成像,rs-fMRI)。尽管神经元节律以及对这些节律的血液动力学反应波动更快,并且有新证据表明关于功能性脑连接的关键信息比这些限制波动得更快,但大多数rs-fMRI研究都集中在频率低于0.1Hz的慢信号波动上。高频成分的表征一直受到标准T2回波平面成像(EPI)序列可实现的采样频率的限制。我们描述了使用加速T2*加权EPI MRI得出的新生儿功能性脑网络连接模式。我们以亚秒级采样频率从足月等效年龄的早产儿获取了全脑rs-fMRI数据,并将其与使用标准EPI采集协议获取的rs-fMRI数据进行了比较。我们提供了首个证据,即新生儿快速rs-fMRI采集以及采用扩展频率范围进行分析,能够识别出相当一部分频率高于0.2Hz的信号功率。由此,我们描述了与成熟度增加相关的脑连接变化,而这些变化使用标准rs-fMRI协议并不明显。开发优化的新生儿功能磁共振成像协议,包括使用高速采集序列,对于理解发育中大脑的生理学和病理生理学至关重要。