Owens Gregory P, Ritchie Alanna, Rossi Andrea, Schaller Kristin, Wemlinger Scott, Schumann Hannah, Shearer Andrew, Verkman Alan S, Bennett Jeffrey L
From the Departments of Neurology and.
the Department III-Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany, and.
J Biol Chem. 2015 May 8;290(19):12123-34. doi: 10.1074/jbc.M115.647149. Epub 2015 Mar 19.
Neuromyelitis optica-immunoglobulin G (NMO-IgG) binds to aquaporin-4 (AQP4) water channels in the central nervous system leading to immune-mediated injury. We have previously demonstrated that a high proportion of CSF plasma cells of NMO patients produce antibody to the extracellular domains of the AQP4 protein and that recombinant IgG (rAb) derived from these cells recapitulate pathogenic features of disease. We performed a comprehensive mutational analysis of the three extracellular loops of the M23 isoform of human AQP4 using both serial and single point mutations, and we evaluated the effects on binding of NMO AQP4-reactive rAbs by quantitative immunofluorescence. Whereas all NMO rAbs required conserved loop C ((137)TP(138) and Val(150)) and loop E ((230)HW(231)) amino acids for binding, two broad patterns of NMO-IgG recognition could be distinguished based on differential sensitivity to loop A amino acid changes. Pattern 1 NMO rAbs were insensitive to loop A mutations and could be further discriminated by differential sensitivity to amino acid changes in loop C ((148)TM(149) and His(151)) and loop E (Asn(226) and Glu(228)). Alternatively, pattern 2 NMO rAbs showed significantly reduced binding following amino acid changes in loop A ((63)EKP(65) and Asp(69)) and loop C (Val(141), His(151), and Leu(154)). Amino acid substitutions at (137)TP(138) altered loop C conformation and abolished the binding of all NMO rAbs and NMO-IgG, indicating the global importance of loop C conformation to the recognition of AQP4 by pathogenic NMO Abs. The generation of human NMO rAbs has allowed the first high resolution mapping of extracellular loop amino acids critical for NMO-IgG binding and identified regions of AQP4 extracellular structure that may represent prime targets for drug therapy.
视神经脊髓炎免疫球蛋白G(NMO-IgG)与中枢神经系统中的水通道蛋白4(AQP4)水通道结合,导致免疫介导的损伤。我们之前已经证明,NMO患者的脑脊液浆细胞中有很大一部分产生针对AQP4蛋白细胞外结构域的抗体,并且从这些细胞中获得的重组IgG(rAb)概括了疾病的致病特征。我们使用连续和单点突变对人AQP4的M23亚型的三个细胞外环进行了全面的突变分析,并通过定量免疫荧光评估了对NMO AQP4反应性rAb结合的影响。虽然所有NMO rAb都需要保守的环C((137)TP(138)和Val(150))和环E((230)HW(231))氨基酸进行结合,但基于对环A氨基酸变化的不同敏感性,可以区分两种广泛的NMO-IgG识别模式。模式1的NMO rAb对环A突变不敏感,并且可以通过对环C((148)TM(149)和His(151))和环E(Asn(226)和Glu(228))中氨基酸变化的不同敏感性进一步区分。或者,模式2的NMO rAb在环A((63)EKP(65)和Asp(69))和环C(Val(141)、His(151)和Leu(154))中的氨基酸变化后显示结合显著降低。(137)TP(138)处的氨基酸替代改变了环C的构象,并消除了所有NMO rAb和NMO-IgG的结合,表明环C构象对致病性NMO抗体识别AQP4具有全局重要性。人NMO rAb的产生首次实现了对NMO-IgG结合至关重要的细胞外环氨基酸的高分辨率图谱绘制,并确定了AQP4细胞外结构中可能代表药物治疗主要靶点的区域。