Flurin E, Roch N, Pillet J D, Mallet F, Huard B
Laboratoire Pierre Aigrain, Ecole Normale Supérieure-PSL Research University, CNRS, Université Pierre et Marie Curie-Sorbonne Universités, Université Paris Diderot-Sorbonne Paris Cité, 24 rue Lhomond, 75231 Paris Cedex 05, France.
Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France.
Phys Rev Lett. 2015 Mar 6;114(9):090503. doi: 10.1103/PhysRevLett.114.090503. Epub 2015 Mar 4.
Superconducting circuits and microwave signals are good candidates to realize quantum networks, which are the backbone of quantum computers. We have realized a quantum node based on a 3D microwave superconducting cavity parametrically coupled to a transmission line by a Josephson ring modulator. We first demonstrate the time-controlled capture, storage, and retrieval of an optimally shaped propagating microwave field, with an efficiency as high as 80%. We then demonstrate a second essential ability, which is the time-controlled generation of an entangled state distributed between the node and a microwave channel.
超导电路和微波信号是实现量子网络的理想选择,而量子网络是量子计算机的核心。我们已经实现了一个基于三维微波超导腔的量子节点,该超导腔通过约瑟夫森环调制器与传输线进行参量耦合。我们首先展示了对最优形状的传播微波场进行时间控制的捕获、存储和检索,效率高达80%。然后,我们展示了第二个基本能力,即时间控制生成分布在节点和微波通道之间的纠缠态。