Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC.
Small. 2015 Jul 1;11(25):3017-27. doi: 10.1002/smll.201403463. Epub 2015 Mar 24.
Despite the vast progress in chemical vapor deposition (CVD) graphene grown on metals, the transfer process is still a major bottleneck, being not devoid of wrinkles and polymer residues. In this paper, a structure is introduced to directly synthesize few layer graphene on insulating substrates by a laser irradiation heating process. The segregation of graphene layers can be manipulated by tuning the metal layer thickness and laser power at different scanning rates. Graphene deposition and submicrometer patterning resolution can be achieved by patterning the intermediate metal layer using standard lithography methods in order to overcome the scalability issue regardless the resolution of the laser beam. The systematic analysis of the process based on the formation of carbon microchannels by the laser irradiation process can be extended to several materials, thicknesses, and methods. Furthermore, hole and electron mobilities of 500 and 950 cm(2) V(-1) s(-1) are measured. The laser-synthesized graphene is a step forward along the direct synthesis route for graphene on insulators that meets the criteria for photonics and electronics.
尽管在金属上通过化学气相沉积 (CVD) 生长石墨烯已经取得了巨大的进展,但转移过程仍然是一个主要的瓶颈,其中不乏褶皱和聚合物残留物。在本文中,我们提出了一种结构,通过激光辐照加热过程可以直接在绝缘衬底上合成少层石墨烯。通过调整金属层厚度和不同扫描速率下的激光功率,可以控制石墨烯层的分离。通过使用标准光刻方法对中间金属层进行图案化,可以实现石墨烯的沉积和亚微米级图案化分辨率,从而克服了激光束分辨率的限制问题。基于激光辐照过程中形成的碳微通道的工艺的系统分析可以扩展到几种材料、厚度和方法。此外,还测量了 500 和 950 cm(2) V(-1) s(-1) 的空穴和电子迁移率。激光合成的石墨烯是在绝缘体上直接合成石墨烯的一个重要进展,符合光子学和电子学的标准。