Key Laboratory of Photochemistry, National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China).
Angew Chem Int Ed Engl. 2015 May 11;54(20):5905-9. doi: 10.1002/anie.201412035. Epub 2015 Mar 25.
The hole-driving oxidation of titanium-coordinated water molecules on the surface of TiO2 is both thermodynamically and kinetically unfavorable. By avoiding the direct coordinative adsorption of water molecules to the surface Ti sites, the water can be activated to realize its oxidation. When TiO2 surface is covered by the H-bonding acceptor F, the first-layer water adsorption mode is switched from Ti coordination to a dual H-bonding adsorption on adjacent surface F sites. Detailed in situ IR spectroscopy and isotope-labeling studies reveal that the adsorbed water molecules by dual H-bonding can be oxidized to O2 even in the absence of any electron scavengers. Combined with theoretical calculations, it is proposed that the formation of the dual H-bonding structure can not only enable the hole transfer to the water molecules thermodynamically, but also facilitate kinetically the cleavage of O-H bonds by proton-coupled electron transfer process during water oxidation.
TiO2 表面配位水分子的钻孔氧化在热力学和动力学上都是不利的。通过避免水分子直接配位吸附到表面 Ti 位,可以使水分子活化以实现其氧化。当 TiO2 表面被氢键受体 F 覆盖时,第一层水吸附模式从 Ti 配位切换为相邻表面 F 位上的双重氢键吸附。详细的原位红外光谱和同位素标记研究表明,即使没有任何电子清除剂,通过双重氢键吸附的水分子也可以被氧化为 O2。结合理论计算,提出了形成双重氢键结构不仅可以使空穴向水分子热力学转移,而且可以通过质子耦合电子转移过程在水氧化过程中促进 O-H 键的断裂。