Mühlbauer Dirk, Dzieciolowski Julia, Hardt Martin, Hocke Andreas, Schierhorn Kristina L, Mostafa Ahmed, Müller Christin, Wisskirchen Christian, Herold Susanne, Wolff Thorsten, Ziebuhr John, Pleschka Stephan
Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany.
Imaging Unit, Biomedical Research Center, Justus Liebig University Giessen, Giessen, Germany.
J Virol. 2015 Jun;89(11):6009-21. doi: 10.1128/JVI.03531-14. Epub 2015 Mar 25.
Influenza A viruses (IAV) replicate their segmented RNA genome in the nucleus of infected cells and utilize caspase-dependent nucleocytoplasmic export mechanisms to transport newly formed ribonucleoprotein complexes (RNPs) to the site of infectious virion release at the plasma membrane. In this study, we obtained evidence that apoptotic caspase activation in IAV-infected cells is associated with the degradation of the nucleoporin Nup153, an integral subunit of the nuclear pore complex. Transmission electron microscopy studies revealed a distinct enlargement of nuclear pores in IAV-infected cells. Transient expression and subcellular accumulation studies of multimeric marker proteins in virus-infected cells provided additional evidence for increased nuclear pore diameters facilitating the translocation of large protein complexes across the nuclear membrane. Furthermore, caspase 3/7 inhibition data obtained in this study suggest that active, Crm1-dependent IAV RNP export mechanisms are increasingly complemented by passive, caspase-induced export mechanisms at later stages of infection.
In contrast to the process seen with most other RNA viruses, influenza virus genome replication occurs in the nucleus (rather than the cytoplasm) of infected cells. Therefore, completion of the viral replication cycle critically depends on intracellular transport mechanisms that ensure the translocation of viral ribonucleoprotein (RNP) complexes across the nuclear membrane. Here, we demonstrate that virus-induced cellular caspase activities cause a widening of nuclear pores, thereby facilitating nucleocytoplasmic translocation processes and, possibly, promoting nuclear export of newly synthesized RNPs. These passive transport mechanisms are suggested to complement Crm1-dependent RNP export mechanisms known to occur at early stages of the replication cycle and may contribute to highly efficient production of infectious virus progeny at late stages of the viral replication cycle. The report provides an intriguing example of how influenza virus exploits cellular structures and regulatory pathways, including intracellular transport mechanisms, to complete its replication cycle and maximize the production of infectious virus progeny.
甲型流感病毒(IAV)在受感染细胞的细胞核中复制其分段RNA基因组,并利用半胱天冬酶依赖性核质输出机制将新形成的核糖核蛋白复合物(RNP)转运至质膜处感染性病毒粒子释放的部位。在本研究中,我们获得的证据表明,IAV感染细胞中的凋亡性半胱天冬酶激活与核孔蛋白Nup153(核孔复合体的一个完整亚基)的降解有关。透射电子显微镜研究显示,IAV感染细胞中的核孔明显扩大。对病毒感染细胞中多聚体标记蛋白的瞬时表达和亚细胞积累研究为核孔直径增加提供了额外证据,这有利于大蛋白复合物穿过核膜的转运。此外,本研究获得的半胱天冬酶3/7抑制数据表明,在感染后期,活跃的、依赖Crm1的IAV RNP输出机制越来越多地被被动的、半胱天冬酶诱导的输出机制所补充。
与大多数其他RNA病毒的情况不同,流感病毒基因组复制发生在受感染细胞的细胞核(而非细胞质)中。因此,病毒复制周期的完成关键取决于细胞内运输机制,该机制确保病毒核糖核蛋白(RNP)复合物穿过核膜。在这里,我们证明病毒诱导的细胞半胱天冬酶活性导致核孔扩大,从而促进核质转运过程,并可能促进新合成的RNP的核输出。这些被动运输机制被认为是对复制周期早期已知的依赖Crm1的RNP输出机制的补充,并可能有助于在病毒复制周期后期高效产生感染性病毒后代。该报告提供了一个有趣的例子,说明流感病毒如何利用细胞结构和调节途径,包括细胞内运输机制,来完成其复制周期并最大限度地产生感染性病毒后代。