Zheng Tao, Wu Qun-Yan, Gao Yang, Gui Daxiang, Qiu Shiwen, Chen Lanhua, Sheng Daopeng, Diwu Juan, Shi Wei-Qun, Chai Zhifang, Albrecht-Schmitt Thomas E, Wang Shuao
§Key Laboratory of Nuclear Radiation and Nuclear Energy Technology and Key Laboratory For Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
∥Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States.
Inorg Chem. 2015 Apr 20;54(8):3864-74. doi: 10.1021/acs.inorgchem.5b00024. Epub 2015 Mar 27.
Systematic control of the reactions between U(VI) and 1,4-phenylenebis(methylene))bis(phosphonic acid) (pmbH4) allows for alterations in the bonding between these constituents and affords three uranyl phosphonate compounds with chiral one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) structures, namely, [TPA][UO2(pmbH3)(pmbH2)H2O]·2H2O (1), [NH4]2[UO2(pmb)] (2), UO2(pmbH2) (3), and the first uranyl mixed phosphite/phosphonate compound [TMA]2[(UO2)2(pmb)(HPO3)] (4) (TPA = NPr4+, TMA = NMe4+). These compounds crystallize in the space groups P212121, P1̅, P21/c, and Cmcm, respectively. Further investigation of the local uranyl coordination environment reveals that in 1 only oxygen atoms from P=O moieties ligate the uranium centers; whereas in 2 only P-O(-) oxygen atoms are involved in bonding and yield a layered topology. Compound 3 differs sharply from the first two in that conjugated P=O and P-O(-) oxygen atoms chelate the uranium centers resulting in a 3D framework. In compound 4, a phosphonate group bridges three uranyl centers further coordinated with a phosphite ligand HPO32–, which is a product of pmbH4 decomposing, forming a 2D layered structure. Compounds 3 and 4 also contain a different coordination environment for U(VI) than that found in 1 or 2. In this case, tetragonal bipyramidal UO6 units occur instead of the far more common UO7 pentagonal bipyramids found in 1 and 2. Interestingly, 1 converts to 3 at elevated reaction temperatures, indicating that the formation of 1 is likely under kinetic control. This is supported by thermal analysis, which reveals that 3 has higher thermal stability than 1 or 2. UV-vis-near-IR absorption and fluorescence spectroscopy show that the absorption and photoluminescence intensity increases from 1 to 4. Density functional theory electronic structure calculations provide insight into the nature of the interactions between U(VI) and the phosphonate ligands.
对U(VI)与1,4 - 亚苯基双(亚甲基))双(膦酸)(pmbH4)之间反应的系统控制,能够改变这些组分之间的键合,并得到三种具有手性一维(1D)、二维(2D)和三维(3D)结构的铀酰膦酸盐化合物,即[TPA][UO2(pmbH3)(pmbH2)H2O]·2H2O (1)、[NH4]2[UO2(pmb)] (2)、UO2(pmbH2) (3),以及首个铀酰亚磷酸酯/膦酸盐混合化合物[TMA]2[(UO2)2(pmb)(HPO3)] (4)(TPA = NPr4+,TMA = NMe4+)。这些化合物分别结晶于空间群P212121、P1̅、P21/c和Cmcm中。对局部铀酰配位环境的进一步研究表明,在化合物1中,仅来自P=O基团的氧原子与铀中心配位;而在化合物2中,仅P - O(-)氧原子参与键合并形成层状拓扑结构。化合物3与前两者有很大不同,共轭的P=O和P - O(-)氧原子螯合铀中心,形成三维框架。在化合物4中,一个膦酸酯基团桥连三个铀酰中心,并进一步与一个亚磷酸酯配体HPO32–配位,HPO32–是pmbH4分解的产物,形成二维层状结构。化合物3和4中U(VI)的配位环境也与化合物1或2中的不同。在这种情况下,出现了四方双锥UO6单元,而不是在化合物1和2中更常见的五角双锥UO7单元。有趣的是,在升高的反应温度下,化合物1会转变为化合物3,这表明化合物1的形成可能受动力学控制。热分析支持了这一点,热分析表明化合物3比化合物1或2具有更高的热稳定性。紫外 - 可见 - 近红外吸收光谱和荧光光谱表明,吸收和光致发光强度从化合物1到化合物4逐渐增加。密度泛函理论电子结构计算深入了解了U(VI)与膦酸酯配体之间相互作用的本质。