Fu Xiang, Feng Jufu
Key Laboratory of Machine Perception (MOE), Department of Machine Intelligence, School of Electronics Engineering and Computer Science, Peking University, Beijing, China.
PLoS One. 2015 Mar 30;10(3):e0118910. doi: 10.1371/journal.pone.0118910. eCollection 2015.
Establishing correspondences between two minutia sets is a fundamental issue in fingerprint recognition. This paper proposes a new tensor matching strategy. First, the concept of minutia tensor matrix (simplified as MTM) is proposed. It describes the first-order features and second-order features of a matching pair. In the MTM, the diagonal elements indicate similarities of minutia pairs and non-diagonal elements indicate pairwise compatibilities between minutia pairs. Correct minutia pairs are likely to establish both large similarities and large compatibilities, so they form a dense sub-block. Minutia matching is then formulated as recovering the dense sub-block in the MTM. This is a new tensor matching strategy for fingerprint recognition. Second, as fingerprint images show both local rigidity and global nonlinearity, we design two different kinds of MTMs: local MTM and global MTM. Meanwhile, a two-level matching algorithm is proposed. For local matching level, the local MTM is constructed and a novel local similarity calculation strategy is proposed. It makes full use of local rigidity in fingerprints. For global matching level, the global MTM is constructed to calculate similarities of entire minutia sets. It makes full use of global compatibility in fingerprints. Proposed method has stronger description ability and better robustness to noise and nonlinearity. Experiments conducted on Fingerprint Verification Competition databases (FVC2002 and FVC2004) demonstrate the effectiveness and the efficiency.
在两个细节点集之间建立对应关系是指纹识别中的一个基本问题。本文提出了一种新的张量匹配策略。首先,提出了细节点张量矩阵(简称为MTM)的概念。它描述了匹配对的一阶特征和二阶特征。在MTM中,对角元素表示细节点对的相似性,非对角元素表示细节点对之间的成对兼容性。正确的细节点对可能同时建立起较大的相似性和较大的兼容性,因此它们形成一个密集子块。然后,将细节点匹配表述为在MTM中恢复密集子块。这是一种用于指纹识别的新的张量匹配策略。其次,由于指纹图像既表现出局部刚性又表现出全局非线性,我们设计了两种不同类型的MTM:局部MTM和全局MTM。同时,提出了一种两级匹配算法。对于局部匹配级,构建局部MTM并提出一种新颖的局部相似性计算策略。它充分利用了指纹中的局部刚性。对于全局匹配级,构建全局MTM以计算整个细节点集的相似性。它充分利用了指纹中的全局兼容性。所提出的方法具有更强的描述能力,并且对噪声和非线性具有更好的鲁棒性。在指纹验证竞赛数据库(FVC2002和FVC2004)上进行的实验证明了该方法的有效性和效率。