Lamart Stephanie, Simon Steven L, Bouville Andre, Moroz Brian E, Lee Choonsik
Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
Radiat Prot Dosimetry. 2016 Jan;168(1):92-110. doi: 10.1093/rpd/ncv016. Epub 2015 Mar 31.
To improve the estimates of organ doses from nuclear medicine procedures using (131)I, the authors calculated a comprehensive set of (131)I S values, defined as absorbed doses in target tissues per unit of nuclear transition in source regions, for different source and target combinations. The authors used the latest reference adult male and female voxel phantoms published by the International Commission on Radiological Protection (ICRP Publication 110) and the (131)I photon and electron spectra from the ICRP Publication 107 to perform Monte Carlo radiation transport calculations using MCNPX2.7 to compute the S values. For each phantom, the authors simulated 55 source regions with an assumed uniform distribution of (131)I. They computed the S values for 42 target tissues directly, without calculating specific absorbed fractions. From these calculations, the authors derived a comprehensive set of S values for (131)I for 55 source regions and 42 target tissues in the ICRP male and female voxel phantoms. Compared with the stylised phantoms from Oak Ridge National Laboratory (ORNL) that consist of 22 source regions and 24 target regions, the new data set includes 1662 additional S values corresponding to additional combinations of source-target tissues that are not available in the stylised phantoms. In a comparison of S values derived from the ICRP and ORNL phantoms, the authors found that the S values to the radiosensitive tissues in the ICRP phantoms were 1.1 (median, female) and 1.3 (median, male) times greater than the values based on the ORNL phantoms. However, for several source-target pairs, the difference was up to 10-fold. The new set of S values can be applied prospectively or retrospectively to the calculation of radiation doses in adults internally exposed to (131)I, including nuclear medicine patients treated for thyroid cancer or hyperthyroidism.
为了改进使用(131)I的核医学程序中器官剂量的估计值,作者针对不同的源和靶组合,计算了一组全面的(131)I的S值,S值定义为源区域每单位核跃迁在靶组织中的吸收剂量。作者使用国际放射防护委员会发布的最新参考成年男性和女性体素模型(ICRP第110号出版物)以及ICRP第107号出版物中的(131)I光子和电子能谱,利用MCNPX2.7进行蒙特卡罗辐射传输计算以得出S值。对于每个模型,作者模拟了55个源区域,假定(131)I呈均匀分布。他们直接计算了42个靶组织的S值,而无需计算特定吸收分数。通过这些计算,作者得出了ICRP男性和女性体素模型中55个源区域和42个靶组织的一组全面的(131)I的S值。与橡树岭国家实验室(ORNL)的由22个源区域和24个靶区域组成的简化模型相比,新数据集包含另外1662个S值,对应于简化模型中没有的源 - 靶组织的其他组合。在比较从ICRP和ORNL模型得出的S值时,作者发现ICRP模型中对放射敏感组织的S值比基于ORNL模型的值大1.1倍(女性中位数)和1.3倍(男性中位数)。然而,对于几个源 - 靶对,差异高达10倍。这组新的S值可前瞻性或回顾性地应用于计算体内接受(131)I照射的成年人的辐射剂量,包括接受甲状腺癌或甲状腺功能亢进治疗的核医学患者。