Leger Michelle M, Petrů Markéta, Žárský Vojtěch, Eme Laura, Vlček Čestmír, Harding Tommy, Lang B Franz, Eliáš Marek, Doležal Pavel, Roger Andrew J
Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R2;
Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University in Vestec (BIOCEV) Group, Department of Parasitology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic;
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10239-46. doi: 10.1073/pnas.1421392112. Epub 2015 Mar 23.
Bacterial division initiates at the site of a contractile Z-ring composed of polymerized FtsZ. The location of the Z-ring in the cell is controlled by a system of three mutually antagonistic proteins, MinC, MinD, and MinE. Plastid division is also known to be dependent on homologs of these proteins, derived from the ancestral cyanobacterial endosymbiont that gave rise to plastids. In contrast, the mitochondria of model systems such as Saccharomyces cerevisiae, mammals, and Arabidopsis thaliana seem to have replaced the ancestral α-proteobacterial Min-based division machinery with host-derived dynamin-related proteins that form outer contractile rings. Here, we show that the mitochondrial division system of these model organisms is the exception, rather than the rule, for eukaryotes. We describe endosymbiont-derived, bacterial-like division systems comprising FtsZ and Min proteins in diverse less-studied eukaryote protistan lineages, including jakobid and heterolobosean excavates, a malawimonad, stramenopiles, amoebozoans, a breviate, and an apusomonad. For two of these taxa, the amoebozoan Dictyostelium purpureum and the jakobid Andalucia incarcerata, we confirm a mitochondrial localization of these proteins by their heterologous expression in Saccharomyces cerevisiae. The discovery of a proteobacterial-like division system in mitochondria of diverse eukaryotic lineages suggests that it was the ancestral feature of all eukaryotic mitochondria and has been supplanted by a host-derived system multiple times in distinct eukaryote lineages.
细菌分裂起始于由聚合的FtsZ组成的收缩性Z环的位点。Z环在细胞中的位置由MinC、MinD和MinE这三种相互拮抗的蛋白质系统控制。已知质体分裂也依赖于这些蛋白质的同源物,这些同源物源自产生质体的祖先蓝细菌内共生体。相比之下,酿酒酵母、哺乳动物和拟南芥等模式系统的线粒体似乎已经用宿主来源的形成外部收缩环的动力蛋白相关蛋白取代了祖先α-变形菌基于Min的分裂机制。在这里,我们表明这些模式生物的线粒体分裂系统是真核生物的例外,而非普遍规律。我们描述了在多种研究较少的真核原生生物谱系中,包括雅各布虫和异叶足虫类挖掘虫、马拉维单胞菌、硅藻、变形虫、短膜虫和阿普索单胞菌,存在由内共生体衍生的、类似细菌的分裂系统,该系统由FtsZ和Min蛋白组成。对于其中两个分类群,即变形虫紫球藻和雅各布虫安达卢西亚监禁虫,我们通过它们在酿酒酵母中的异源表达证实了这些蛋白质在线粒体中的定位。在多种真核生物谱系的线粒体中发现类似变形菌的分裂系统表明,这是所有真核生物线粒体的祖先特征,并且在不同的真核生物谱系中已多次被宿主来源的系统所取代。