Suppr超能文献

震动、摇晃与滚动:黄病毒颗粒动力学对其与宿主相互作用的影响

Shake, rattle, and roll: Impact of the dynamics of flavivirus particles on their interactions with the host.

作者信息

Kuhn Richard J, Dowd Kimberly A, Beth Post Carol, Pierson Theodore C

机构信息

Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.

Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Virology. 2015 May;479-480:508-17. doi: 10.1016/j.virol.2015.03.025. Epub 2015 Mar 30.

Abstract

Remarkable progress in structural biology has equipped virologists with insight into structures of viral proteins and virions at increasingly high resolution. Structural information has been used extensively to address fundamental questions about virtually all aspects of how viruses replicate in cells, interact with the host, and in the design of antiviral compounds. However, many critical aspects of virology exist outside the snapshots captured by traditional methods used to generate high-resolution structures. Like all proteins, viral proteins are not static structures. The conformational flexibility and dynamics of proteins play a significant role in protein-protein interactions, and in the structure and biology of virus particles. This review will discuss the implications of the dynamics of viral proteins on the biology, antigenicity, and immunogenicity of flaviviruses.

摘要

结构生物学的显著进展使病毒学家能够深入了解病毒蛋白和病毒体的结构,分辨率越来越高。结构信息已被广泛用于解决几乎所有方面的基本问题,包括病毒如何在细胞中复制、与宿主相互作用以及抗病毒化合物的设计。然而,病毒学的许多关键方面存在于用于生成高分辨率结构的传统方法所捕捉的快照之外。与所有蛋白质一样,病毒蛋白不是静态结构。蛋白质的构象灵活性和动力学在蛋白质-蛋白质相互作用以及病毒颗粒的结构和生物学中起着重要作用。本综述将讨论病毒蛋白动力学对黄病毒生物学、抗原性和免疫原性的影响。

相似文献

1
Shake, rattle, and roll: Impact of the dynamics of flavivirus particles on their interactions with the host.
Virology. 2015 May;479-480:508-17. doi: 10.1016/j.virol.2015.03.025. Epub 2015 Mar 30.
2
The Many Faces of a Dynamic Virion: Implications of Viral Breathing on Flavivirus Biology and Immunogenicity.
Annu Rev Virol. 2018 Sep 29;5(1):185-207. doi: 10.1146/annurev-virology-092917-043300.
3
A CRISPR screen defines a signal peptide processing pathway required by flaviviruses.
Nature. 2016 Jul 7;535(7610):164-8. doi: 10.1038/nature18625. Epub 2016 Jun 17.
4
Coupling of replication and assembly in flaviviruses.
Curr Opin Virol. 2014 Dec;9:134-42. doi: 10.1016/j.coviro.2014.09.020. Epub 2014 Oct 18.
5
Flaviviruses and flavivirus vaccines.
Vaccine. 2012 Jun 19;30(29):4301-6. doi: 10.1016/j.vaccine.2011.09.114.
7
Insights into Structures and Dynamics of Flavivirus Proteases from NMR Studies.
Int J Mol Sci. 2020 Apr 5;21(7):2527. doi: 10.3390/ijms21072527.
8
Role of host cell factors in flavivirus infection: Implications for pathogenesis and development of antiviral drugs.
Antiviral Res. 2010 Sep;87(3):281-94. doi: 10.1016/j.antiviral.2010.04.014. Epub 2010 May 7.
9
Regulation of Flavivirus RNA synthesis and replication.
Curr Opin Virol. 2014 Dec;9:74-83. doi: 10.1016/j.coviro.2014.09.011. Epub 2014 Oct 17.
10
Biochemistry and Molecular Biology of Flaviviruses.
Chem Rev. 2018 Apr 25;118(8):4448-4482. doi: 10.1021/acs.chemrev.7b00719. Epub 2018 Apr 13.

引用本文的文献

1
Evolution and adaptation of dengue virus in response to high-temperature passaging in mosquito cells.
Virus Evol. 2025 Apr 24;11(1):veaf016. doi: 10.1093/ve/veaf016. eCollection 2025.
2
Structural Changes Likely Cause Chemical Differences between Empty and Full AAV Capsids.
Biomedicines. 2024 Sep 19;12(9):2128. doi: 10.3390/biomedicines12092128.
4
Structure of a SARS-CoV-2 spike S2 subunit in a pre-fusion, open conformation.
bioRxiv. 2023 Dec 15:2023.12.14.571764. doi: 10.1101/2023.12.14.571764.
5
Host immunity and vaccine development against Dengue virus.
Infect Med (Beijing). 2022 Feb 6;1(1):50-58. doi: 10.1016/j.imj.2021.12.003. eCollection 2022 Mar.
7
Homotypic antibodies target novel E glycoprotein domains after natural DENV 3 infection/vaccination.
Cell Host Microbe. 2023 Nov 8;31(11):1850-1865.e5. doi: 10.1016/j.chom.2023.10.004. Epub 2023 Oct 30.
8
A Prototype-Pathogen Approach for the Development of Flavivirus Countermeasures.
J Infect Dis. 2023 Oct 18;228(Suppl 6):S398-S413. doi: 10.1093/infdis/jiad193.
9
Genome evolution of dengue virus serotype 1 under selection by in mosquitoes.
Virus Evol. 2023 Mar 3;9(1):vead016. doi: 10.1093/ve/vead016. eCollection 2023.
10
Nanomechanical and Vibrational Signature of Chikungunya Viral Particles.
Viruses. 2022 Dec 17;14(12):2821. doi: 10.3390/v14122821.

本文引用的文献

2
Recognition determinants of broadly neutralizing human antibodies against dengue viruses.
Nature. 2015 Apr 2;520(7545):109-13. doi: 10.1038/nature14130. Epub 2015 Jan 12.
4
Conformational dynamics of single HIV-1 envelope trimers on the surface of native virions.
Science. 2014 Nov 7;346(6210):759-63. doi: 10.1126/science.1254426. Epub 2014 Oct 8.
5
Structure and immune recognition of trimeric pre-fusion HIV-1 Env.
Nature. 2014 Oct 23;514(7523):455-61. doi: 10.1038/nature13808. Epub 2014 Oct 8.
7
Combined effects of the structural heterogeneity and dynamics of flaviviruses on antibody recognition.
J Virol. 2014 Oct;88(20):11726-37. doi: 10.1128/JVI.01140-14. Epub 2014 Jul 30.
8
Kinetic models for receptor-catalyzed conversion of coxsackievirus B3 to A-particles.
J Virol. 2014 Oct;88(19):11568-75. doi: 10.1128/JVI.01790-14. Epub 2014 Jul 30.
9
The HIV-1 Env trimer in HD.
Structure. 2014 Jul 8;22(7):935-6. doi: 10.1016/j.str.2014.06.004.
10
Kinetic and structural analysis of coxsackievirus B3 receptor interactions and formation of the A-particle.
J Virol. 2014 May;88(10):5755-65. doi: 10.1128/JVI.00299-14. Epub 2014 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验