Suppr超能文献

通过底物谱分析对磷酸酶超家族的全景观察。

Panoramic view of a superfamily of phosphatases through substrate profiling.

作者信息

Huang Hua, Pandya Chetanya, Liu Chunliang, Al-Obaidi Nawar F, Wang Min, Zheng Li, Toews Keating Sarah, Aono Miyuki, Love James D, Evans Brandon, Seidel Ronald D, Hillerich Brandan S, Garforth Scott J, Almo Steven C, Mariano Patrick S, Dunaway-Mariano Debra, Allen Karen N, Farelli Jeremiah D

机构信息

Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131;

Department of Chemistry, Boston University, Boston, MA 02215; Bioinformatics Graduate Program, Boston University, Boston, MA 02215; and.

出版信息

Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):E1974-83. doi: 10.1073/pnas.1423570112. Epub 2015 Apr 6.

Abstract

Large-scale activity profiling of enzyme superfamilies provides information about cellular functions as well as the intrinsic binding capabilities of conserved folds. Herein, the functional space of the ubiquitous haloalkanoate dehalogenase superfamily (HADSF) was revealed by screening a customized substrate library against >200 enzymes from representative prokaryotic species, enabling inferred annotation of ∼35% of the HADSF. An extremely high level of substrate ambiguity was revealed, with the majority of HADSF enzymes using more than five substrates. Substrate profiling allowed assignment of function to previously unannotated enzymes with known structure, uncovered potential new pathways, and identified iso-functional orthologs from evolutionarily distant taxonomic groups. Intriguingly, the HADSF subfamily having the least structural elaboration of the Rossmann fold catalytic domain was the most specific, consistent with the concept that domain insertions drive the evolution of new functions and that the broad specificity observed in HADSF may be a relic of this process.

摘要

对酶超家族进行大规模活性分析可提供有关细胞功能以及保守折叠的内在结合能力的信息。在此,通过针对来自代表性原核生物物种的200多种酶筛选定制的底物文库,揭示了普遍存在的卤代烷酸脱卤酶超家族(HADSF)的功能空间,从而能够对约35%的HADSF进行推断注释。结果显示出极高的底物模糊性,大多数HADSF酶使用超过五种底物。底物分析使我们能够为具有已知结构的先前未注释的酶赋予功能,发现潜在的新途径,并从进化距离较远的分类群中鉴定出同功能的直系同源物。有趣的是,在Rossmann折叠催化结构域中结构修饰最少的HADSF亚家族具有最高的特异性,这与结构域插入驱动新功能进化的概念一致,并且在HADSF中观察到的广泛特异性可能是这一过程的遗留产物。

相似文献

1
Panoramic view of a superfamily of phosphatases through substrate profiling.
Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):E1974-83. doi: 10.1073/pnas.1423570112. Epub 2015 Apr 6.
5
Crystallization of Liganded Phosphatases in the HAD Superfamily.
Methods Enzymol. 2018;607:157-184. doi: 10.1016/bs.mie.2018.06.011. Epub 2018 Aug 9.
6
Covalent docking predicts substrates for haloalkanoate dehalogenase superfamily phosphatases.
Biochemistry. 2015 Jan 20;54(2):528-37. doi: 10.1021/bi501140k. Epub 2015 Jan 5.
9
A novel structurally characterized haloacid dehalogenase superfamily phosphatase from Thermococcus thioreducens with diverse substrate specificity.
Acta Crystallogr D Struct Biol. 2019 Aug 1;75(Pt 8):743-752. doi: 10.1107/S2059798319009586. Epub 2019 Jul 30.
10
Enzyme promiscuity: engine of evolutionary innovation.
J Biol Chem. 2014 Oct 31;289(44):30229-30236. doi: 10.1074/jbc.R114.572990. Epub 2014 Sep 10.

引用本文的文献

1
Mutations Elevate an Underground Pathway to a Physiologically Relevant Protopathway.
Mol Biol Evol. 2025 Jul 30;42(8). doi: 10.1093/molbev/msaf193.
3
Active site determinants of yeast Pah1 phosphatidate phosphatase activity and cellular functions.
J Biol Chem. 2025 Jul 17;301(8):110492. doi: 10.1016/j.jbc.2025.110492.
5
Crystal structure and catalytic mechanism of drimenol synthase, an unusual bifunctional terpene cyclase-phosphatase.
Proc Natl Acad Sci U S A. 2025 Jul;122(26):e2506584122. doi: 10.1073/pnas.2506584122. Epub 2025 Jun 26.
6
Identification of the phosphatase essential for riboflavin biosynthesis in Aquifex aeolicus.
J Biol Chem. 2025 Mar 25;301(5):108443. doi: 10.1016/j.jbc.2025.108443.
7
8
CPI-Pred: A deep learning framework for predicting functional parameters of compound-protein interactions.
bioRxiv. 2025 Jan 21:2025.01.16.633372. doi: 10.1101/2025.01.16.633372.
9
Microbial synthesis of sedoheptulose from glucose by metabolically engineered Corynebacterium glutamicum.
Microb Cell Fact. 2024 Sep 14;23(1):251. doi: 10.1186/s12934-024-02501-2.
10
Architecture and function of yeast phosphatidate phosphatase Pah1 domains/regions.
Biochim Biophys Acta Mol Cell Biol Lipids. 2024 Dec;1869(8):159547. doi: 10.1016/j.bbalip.2024.159547. Epub 2024 Aug 3.

本文引用的文献

1
Structure of the trehalose-6-phosphate phosphatase from Brugia malayi reveals key design principles for anthelmintic drugs.
PLoS Pathog. 2014 Jul 3;10(7):e1004245. doi: 10.1371/journal.ppat.1004245. eCollection 2014 Jul.
3
Lipin 2 binds phosphatidic acid by the electrostatic hydrogen bond switch mechanism independent of phosphorylation.
J Biol Chem. 2014 Jun 27;289(26):18055-66. doi: 10.1074/jbc.M114.547604. Epub 2014 May 8.
4
Connectivity between catalytic landscapes of the metallo-β-lactamase superfamily.
J Mol Biol. 2014 Jun 26;426(13):2442-56. doi: 10.1016/j.jmb.2014.04.013. Epub 2014 Apr 24.
6
The Structure-Function Linkage Database.
Nucleic Acids Res. 2014 Jan;42(Database issue):D521-30. doi: 10.1093/nar/gkt1130. Epub 2013 Nov 23.
7
Revealing the hidden functional diversity of an enzyme family.
Nat Chem Biol. 2014 Jan;10(1):42-9. doi: 10.1038/nchembio.1387. Epub 2013 Nov 17.
8
Molecular similarity in medicinal chemistry.
J Med Chem. 2014 Apr 24;57(8):3186-204. doi: 10.1021/jm401411z. Epub 2013 Nov 11.
9
Consequences of domain insertion on sequence-structure divergence in a superfold.
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):E3381-7. doi: 10.1073/pnas.1305519110. Epub 2013 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验