Buenrostro-Delgado Otoniel, Ortega-Rodriguez Juan Manuel, Clemitshaw Kevin C, González-Razo Carlos, Hernández-Paniagua Iván Y
Solid Waste and Environment Laboratory, Forestry and Agronomics Research Institute, Universidad Michoacana de San Nicolás de Hidalgo, Posta Veterinaria km, 1.5 Morelia-Zinápecuaro, CP 58880 Morelia, Michoacán, Mexico.
Faculty of Biology, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Múgica S/N, Ed. R, Ciudad Universitaria, Col. Felícitas del Río, CP 58040 Morelia, Michoacán, Mexico.
Waste Manag. 2015 Jul;41:20-7. doi: 10.1016/j.wasman.2015.03.026. Epub 2015 Apr 11.
Increasing generation of Urban Solid Waste (USW) has become a significant issue in developing countries due to unprecedented population growth and high rates of urbanisation. This issue has exceeded current plans and programs of local governments to manage and dispose of USW. In this study, a Genetic Algorithm for Rule-set Production (GARP) integrated into a Geographic Information System (GIS) was used to find areas with socio-economic conditions that are representative of the generation of USW constituents in such areas. Socio-economic data of selected variables categorised by Basic Geostatistical Areas (BGAs) were taken from the 2000 National Population Census (NPC). USW and additional socio-economic data were collected during two survey campaigns in 1998 and 2004. Areas for sampling of USW were stratified into lower, middle and upper economic strata according to income. Data on USW constituents were analysed using descriptive statistics and Multivariate Analysis. ARC View 3.2 was used to convert the USW data and socio-economic variables to spatial data. Desk-top GARP software was run to generate a spatial model to identify areas with similar socio-economic conditions to those sampled. Results showed that socio-economic variables such as monthly income and education are positively correlated with waste constituents generated. The GARP used in this study revealed BGAs with similar socio-economic conditions to those sampled, where a similar composition of waste constituents generated is expected. Our results may be useful to decrease USW management costs by improving the collection services.
由于史无前例的人口增长和高城市化率,城市固体废弃物(USW)产生量的增加已成为发展中国家的一个重大问题。这个问题已经超出了地方政府目前管理和处置城市固体废弃物的计划和方案。在本研究中,一种集成到地理信息系统(GIS)中的规则集生成遗传算法(GARP)被用于寻找具有代表此类地区城市固体废弃物成分产生的社会经济条件的区域。按基本地理统计区域(BGA)分类的选定变量的社会经济数据取自2000年全国人口普查(NPC)。城市固体废弃物和其他社会经济数据是在1998年和2004年的两次调查活动中收集的。根据收入将城市固体废弃物采样区域划分为低、中、高经济阶层。使用描述性统计和多变量分析对城市固体废弃物成分数据进行分析。使用ARC View 3.2将城市固体废弃物数据和社会经济变量转换为空间数据。运行桌面GARP软件以生成一个空间模型,以识别与采样区域社会经济条件相似的区域。结果表明,月收入和教育等社会经济变量与产生的废弃物成分呈正相关。本研究中使用的GARP揭示了与采样区域社会经济条件相似的基本地理统计区域,预计这些区域产生的废弃物成分组成相似。我们的结果可能有助于通过改善收集服务来降低城市固体废弃物管理成本。