Besbes Bassem, Rogozan Alexandrina, Rus Adela-Maria, Bensrhair Abdelaziz, Broggi Alberto
Diotasoft, 15 Boulevard Emile Baudot, Massy 91300, France.
LITIS Laboratory, National Institute of Applied Sciences, 76801 Saint-Etienne-du-Rouvray Cedex, France.
Sensors (Basel). 2015 Apr 13;15(4):8570-94. doi: 10.3390/s150408570.
One of the main challenges in intelligent vehicles concerns pedestrian detection for driving assistance. Recent experiments have showed that state-of-the-art descriptors provide better performances on the far-infrared (FIR) spectrum than on the visible one, even in daytime conditions, for pedestrian classification. In this paper, we propose a pedestrian detector with on-board FIR camera. Our main contribution is the exploitation of the specific characteristics of FIR images to design a fast, scale-invariant and robust pedestrian detector. Our system consists of three modules, each based on speeded-up robust feature (SURF) matching. The first module allows generating regions-of-interest (ROI), since in FIR images of the pedestrian shapes may vary in large scales, but heads appear usually as light regions. ROI are detected with a high recall rate with the hierarchical codebook of SURF features located in head regions. The second module consists of pedestrian full-body classification by using SVM. This module allows one to enhance the precision with low computational cost. In the third module, we combine the mean shift algorithm with inter-frame scale-invariant SURF feature tracking to enhance the robustness of our system. The experimental evaluation shows that our system outperforms, in the FIR domain, the state-of-the-art Haar-like Adaboost-cascade, histogram of oriented gradients (HOG)/linear SVM (linSVM) and MultiFtrpedestrian detectors, trained on the FIR images.
智能车辆的主要挑战之一涉及用于驾驶辅助的行人检测。最近的实验表明,即使在白天条件下,对于行人分类,最先进的描述符在远红外(FIR)光谱上的性能也优于可见光光谱。在本文中,我们提出了一种配备车载FIR相机的行人检测器。我们的主要贡献是利用FIR图像的特定特征来设计一种快速、尺度不变且鲁棒的行人检测器。我们的系统由三个模块组成,每个模块都基于加速鲁棒特征(SURF)匹配。第一个模块允许生成感兴趣区域(ROI),因为在FIR图像中行人形状可能在大尺度上变化,但头部通常表现为亮区。通过位于头部区域的SURF特征分层码本以高召回率检测ROI。第二个模块由使用支持向量机(SVM)的行人全身分类组成。该模块允许以低计算成本提高精度。在第三个模块中,我们将均值漂移算法与帧间尺度不变SURF特征跟踪相结合,以增强我们系统的鲁棒性。实验评估表明,在FIR领域,我们的系统优于在FIR图像上训练的最先进的类Haar Adaboost级联、方向梯度直方图(HOG)/线性支持向量机(linSVM)和MultiFtr行人检测器。