Suppr超能文献

使用准稳态标准化摄取值比率获得的β-淀粉样蛋白负荷估计值中血流依赖成分的量化。

Quantification of blood flow-dependent component in estimates of beta-amyloid load obtained using quasi-steady-state standardized uptake value ratio.

作者信息

Cselényi Zsolt, Farde Lars

机构信息

Department of Clinical Neuroscience, PET Centre, Karolinska Institutet, Stockholm, Sweden.

Department of Clinical Neuroscience, AZ Translational Science Centre, Karolinska Institutet, Stockholm, Sweden.

出版信息

J Cereb Blood Flow Metab. 2015 Sep;35(9):1485-93. doi: 10.1038/jcbfm.2015.66. Epub 2015 Apr 15.

Abstract

Longitudinal positron emission tomography (PET) imaging of beta-amyloid is used in basic research and in drug efficacy trials in Alzheimer's disease (AD). However, the extent of amyloid accumulation after clinical onset is not fully known. Importantly, regional PET data are typically quantified using the standardized uptake value ratio (SUVR), which according to simulations is sensitive to changes in regional cerebral blood flow (rCBF). We aimed to better understand the potentials of longitudinal amyloid imaging by disentangling the influence of blood flow on SUVR using experimental data. [18F]AV-45 PET data from 101 subjects, ranging from cognitively normal to AD patients, in the Alzheimer's Disease Neuroimaging Initiative were extracted. The relationship between global cortical distribution volume ratio, indicator of rCBF (R1), and SUVR was examined using multilinear regression. There was a significant effect of rCBF on SUVR. The effect increased by disease severity. Results suggest that changes in rCBF can produce apparent changes in SUVR in AD. Therefore, future longitudinal studies should measure amyloid changes in a way not sensitive to this effect, ideally using quantitative PET imaging. Furthermore, the results suggest no true accumulation beyond clinical onset and highlight the risks of longitudinal amyloid imaging in drug trials in AD.

摘要

β-淀粉样蛋白的纵向正电子发射断层扫描(PET)成像用于阿尔茨海默病(AD)的基础研究和药物疗效试验。然而,临床发病后淀粉样蛋白积累的程度尚不完全清楚。重要的是,区域PET数据通常使用标准化摄取值比率(SUVR)进行量化,根据模拟结果,该比率对区域脑血流量(rCBF)的变化敏感。我们旨在通过利用实验数据厘清血流对SUVR的影响,从而更好地理解纵向淀粉样蛋白成像的潜力。从阿尔茨海默病神经成像计划中提取了101名受试者的[18F]AV-45 PET数据,这些受试者涵盖了从认知正常到AD患者的范围。使用多线性回归研究了全球皮质分布体积比率、rCBF指标(R1)和SUVR之间的关系。rCBF对SUVR有显著影响。这种影响随着疾病严重程度的增加而增强。结果表明,rCBF的变化可在AD中导致SUVR出现明显变化。因此,未来的纵向研究应以对这种影响不敏感的方式测量淀粉样蛋白变化,理想情况下使用定量PET成像。此外,结果表明临床发病后并无真正的积累,并突出了AD药物试验中纵向淀粉样蛋白成像的风险。

相似文献

3
Reference region selection and the association between the rate of amyloid accumulation over time and the baseline amyloid burden.
Eur J Nucl Med Mol Imaging. 2017 Aug;44(8):1364-1374. doi: 10.1007/s00259-017-3666-8. Epub 2017 Mar 22.
9
Basal forebrain atrophy correlates with amyloid β burden in Alzheimer's disease.
Neuroimage Clin. 2014 Nov 27;7:105-13. doi: 10.1016/j.nicl.2014.11.015. eCollection 2015.
10
Longitudinal evaluation of surrogates of regional cerebral blood flow computed from dynamic amyloid PET imaging.
J Cereb Blood Flow Metab. 2020 Feb;40(2):288-297. doi: 10.1177/0271678X19830537. Epub 2019 Feb 12.

引用本文的文献

1
Considerations in the clinical use of amyloid PET and CSF biomarkers for Alzheimer's disease.
Alzheimers Dement. 2025 Mar;21(3):e14528. doi: 10.1002/alz.14528.
2
Arterial spin labeling perfusion MRI in the Alzheimer's Disease Neuroimaging Initiative: Past, present, and future.
Alzheimers Dement. 2024 Dec;20(12):8937-8952. doi: 10.1002/alz.14310. Epub 2024 Oct 21.
3
The ADNI PET Core at 20.
Alzheimers Dement. 2024 Oct;20(10):7340-7349. doi: 10.1002/alz.14165. Epub 2024 Aug 6.
4
5
Synergistic interaction of high blood pressure and cerebral beta-amyloid on tau pathology.
Alzheimers Res Ther. 2022 Dec 24;14(1):193. doi: 10.1186/s13195-022-01149-7.
6
The RSNA QIBA Profile for Amyloid PET as an Imaging Biomarker for Cerebral Amyloid Quantification.
J Nucl Med. 2023 Feb;64(2):294-303. doi: 10.2967/jnumed.122.264031. Epub 2022 Sep 22.
7
Quantification of amyloid PET for future clinical use: a state-of-the-art review.
Eur J Nucl Med Mol Imaging. 2022 Aug;49(10):3508-3528. doi: 10.1007/s00259-022-05784-y. Epub 2022 Apr 7.
9
The Use, Standardization, and Interpretation of Brain Imaging Data in Clinical Trials of Neurodegenerative Disorders.
Neurotherapeutics. 2021 Apr;18(2):686-708. doi: 10.1007/s13311-021-01027-4. Epub 2021 Apr 12.
10
AMYQ: An index to standardize quantitative amyloid load across PET tracers.
Alzheimers Dement. 2021 Sep;17(9):1499-1508. doi: 10.1002/alz.12317. Epub 2021 Apr 2.

本文引用的文献

1
Amyloid PET imaging in Alzheimer's disease: a comparison of three radiotracers.
Eur J Nucl Med Mol Imaging. 2014 Jul;41(7):1398-407. doi: 10.1007/s00259-014-2753-3. Epub 2014 Mar 20.
2
Amyloid-based immunotherapy for Alzheimer's disease in the time of prevention trials: the way forward.
Expert Rev Clin Immunol. 2014 Mar;10(3):405-19. doi: 10.1586/1744666X.2014.883921. Epub 2014 Feb 4.
3
Phase 3 trials of solanezumab for mild-to-moderate Alzheimer's disease.
N Engl J Med. 2014 Jan 23;370(4):311-21. doi: 10.1056/NEJMoa1312889.
4
Amyloid PET in clinical practice: Its place in the multidimensional space of Alzheimer's disease.
Neuroimage Clin. 2013 Apr 6;2:497-511. doi: 10.1016/j.nicl.2013.03.014. eCollection 2013.
5
Five-year follow-up of 11C-PIB uptake in Alzheimer's disease and MCI.
Eur J Nucl Med Mol Imaging. 2014 Feb;41(2):283-9. doi: 10.1007/s00259-013-2562-0. Epub 2013 Sep 27.
6
Longitudinal amyloid imaging using 11C-PiB: methodologic considerations.
J Nucl Med. 2013 Sep;54(9):1570-6. doi: 10.2967/jnumed.112.113654. Epub 2013 Aug 12.
7
The Alzheimer's Disease Neuroimaging Initiative: a review of papers published since its inception.
Alzheimers Dement. 2013 Sep;9(5):e111-94. doi: 10.1016/j.jalz.2013.05.1769. Epub 2013 Aug 7.
8
Current status of PET-imaging probes of β-amyloid plaques.
Arch Pharm Res. 2013 Oct;36(10):1178-84. doi: 10.1007/s12272-013-0193-4. Epub 2013 Jul 1.
9
Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study.
Lancet Neurol. 2013 Apr;12(4):357-67. doi: 10.1016/S1474-4422(13)70044-9. Epub 2013 Mar 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验