Suppr超能文献

扭结不稳定日冕环数值模拟中的激波加热

Shock heating in numerical simulations of kink-unstable coronal loops.

作者信息

Bareford M R, Hood A W

机构信息

School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK

School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2015 May 28;373(2042). doi: 10.1098/rsta.2014.0266.

Abstract

An analysis of the importance of shock heating within coronal magnetic fields has hitherto been a neglected area of study. We present new results obtained from nonlinear magnetohydrodynamic simulations of straight coronal loops. This work shows how the energy released from the magnetic field, following an ideal instability, can be converted into thermal energy, thereby heating the solar corona. Fast dissipation of magnetic energy is necessary for coronal heating and this requirement is compatible with the time scales associated with ideal instabilities. Therefore, we choose an initial loop configuration that is susceptible to the fast-growing kink, an instability that is likely to be created by convectively driven vortices, occurring where the loop field intersects the photosphere (i.e. the loop footpoints). The large-scale deformation of the field caused by the kinking creates the conditions for the formation of strong current sheets and magnetic reconnection, which have previously been considered as sites of heating, under the assumption of an enhanced resistivity. However, our simulations indicate that slow mode shocks are the primary heating mechanism, since, as well as creating current sheets, magnetic reconnection also generates plasma flows that are faster than the slow magnetoacoustic wave speed.

摘要

迄今为止,对日冕磁场中激波加热的重要性分析一直是一个被忽视的研究领域。我们展示了从直日冕环的非线性磁流体动力学模拟中获得的新结果。这项工作表明,在理想不稳定性之后,磁场释放的能量如何转化为热能,从而加热日冕。磁能的快速耗散对于日冕加热是必要的,并且这一要求与理想不稳定性相关的时间尺度是兼容的。因此,我们选择一种初始环构型,它易受快速增长的扭结影响,这种不稳定性很可能由对流驱动的涡旋产生,发生在环场与光球层相交的地方(即环的足点)。扭结引起的场的大规模变形为强电流片的形成和磁重联创造了条件,在电阻率增强的假设下,这些区域以前被认为是加热区域。然而,我们的模拟表明,慢模激波是主要的加热机制,因为除了产生电流片外,磁重联还会产生比慢磁声波速度更快的等离子体流。

相似文献

1
Shock heating in numerical simulations of kink-unstable coronal loops.
Philos Trans A Math Phys Eng Sci. 2015 May 28;373(2042). doi: 10.1098/rsta.2014.0266.
2
Models of coronal heating, turbulence and fast reconnection.
Philos Trans A Math Phys Eng Sci. 2015 May 28;373(2042). doi: 10.1098/rsta.2014.0262.
3
What can large-scale magnetohydrodynamic numerical experiments tell us about coronal heating?
Philos Trans A Math Phys Eng Sci. 2015 May 28;373(2042). doi: 10.1098/rsta.2015.0055.
4
Coronal magnetohydrodynamic waves and oscillations: observations and quests.
Philos Trans A Math Phys Eng Sci. 2006 Feb 15;364(1839):417-32; discussion 432. doi: 10.1098/rsta.2005.1707.
5
Key aspects of coronal heating.
Philos Trans A Math Phys Eng Sci. 2015 May 28;373(2042). doi: 10.1098/rsta.2014.0256.
6
Slipping magnetic reconnection in coronal loops.
Science. 2007 Dec 7;318(5856):1588-91. doi: 10.1126/science.1146143.
7
Self-regulation of solar coronal heating process via the collisionless reconnection condition.
Phys Rev Lett. 2007 Dec 31;99(26):261101. doi: 10.1103/PhysRevLett.99.261101. Epub 2007 Dec 26.
8
A universal model for solar eruptions.
Nature. 2017 Apr 26;544(7651):452-455. doi: 10.1038/nature22050.
9
Is magnetic topology important for heating the solar atmosphere?
Philos Trans A Math Phys Eng Sci. 2015 May 28;373(2042). doi: 10.1098/rsta.2014.0264.
10
Filamentary structure on the Sun from the magnetic Rayleigh-Taylor instability.
Nature. 2005 Mar 24;434(7032):478-81. doi: 10.1038/nature03399.

引用本文的文献

1
Recent advances in coronal heating.
Philos Trans A Math Phys Eng Sci. 2015 May 28;373(2042). doi: 10.1098/rsta.2014.0269.
2
Key aspects of coronal heating.
Philos Trans A Math Phys Eng Sci. 2015 May 28;373(2042). doi: 10.1098/rsta.2014.0256.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验