Zito Gianluigi, Rusciano Giulia, Pesce Giuseppe, Dochshanov Alden, Sasso Antonio
Department of Physics, University of Naples Federico II, via Cintia, 80126-I Naples, Italy.
Nanoscale. 2015 May 14;7(18):8593-606. doi: 10.1039/c5nr01341k.
Label-free chemical imaging of live cell membranes can shed light on the molecular basis of cell membrane functionalities and their alterations under membrane-related diseases. In principle, this can be done by surface-enhanced Raman scattering (SERS) in confocal microscopy, but requires engineering plasmonic architectures with a spatially invariant SERS enhancement factor G(x, y) = G. To this end, we exploit a self-assembled isotropic nanostructure with characteristics of homogeneity typical of the so-called near-hyperuniform disorder. The resulting highly dense, homogeneous and isotropic random pattern consists of clusters of silver nanoparticles with limited size dispersion. This nanostructure brings together several advantages: very large hot spot density (∼10(4) μm(-2)), superior spatial reproducibility (SD < 1% over 2500 μm(2)) and single-molecule sensitivity (Gav ∼ 10(9)), all on a centimeter scale transparent active area. We are able to reconstruct the label-free SERS-based chemical map of live cell membranes with confocal resolution. In particular, SERS imaging is here demonstrated on red blood cells in vitro in order to use the Raman-resonant heme of the cell as a contrast medium to prove spectroscopic detection of membrane molecules. Numerical simulations also clarify the SERS characteristics of the substrate in terms of electromagnetic enhancement and distance sensitivity range consistently with the experiments. The large SERS-active area is intended for multi-cellular imaging on the same substrate, which is important for spectroscopic comparative analysis of complex organisms like cells. This opens new routes for in situ quantitative surface analysis and dynamic probing of living cells exposed to membrane-targeting drugs.
活细胞膜的无标记化学成像能够揭示细胞膜功能的分子基础以及它们在与膜相关疾病下的变化。原则上,这可以通过共聚焦显微镜中的表面增强拉曼散射(SERS)来实现,但需要构建具有空间不变SERS增强因子G(x, y) = G的等离子体结构。为此,我们利用了一种自组装的各向同性纳米结构,其具有所谓近超均匀无序典型的均匀性特征。由此产生的高度密集、均匀且各向同性的随机图案由尺寸分散有限的银纳米颗粒簇组成。这种纳米结构具有几个优点:非常大的热点密度(约10(4) μm(-2))、卓越的空间再现性(在2500 μm(2)范围内标准差<1%)和单分子灵敏度(平均G约为10(9)),所有这些都体现在厘米尺度的透明活性区域上。我们能够以共聚焦分辨率重建活细胞膜基于SERS的无标记化学图谱。特别是,这里在体外对红细胞进行了SERS成像,以便将细胞的拉曼共振血红素用作对比介质,以证明对膜分子的光谱检测。数值模拟还根据电磁增强和距离灵敏度范围,与实验一致地阐明了基底的SERS特性。大的SERS活性区域旨在用于同一基底上的多细胞成像,这对于像细胞这样的复杂生物体的光谱对比分析很重要。这为原位定量表面分析和对暴露于膜靶向药物的活细胞进行动态探测开辟了新途径。