Dorta-Urra Anaís, Zanchet Alexandre, Roncero Octavio, Aguado Alfredo
Facultad de Ciencias Básicas y Aplicadas, Departamento de Física, Universidad Militar Nueva Granada, Bogotá DC, Colombia.
Instituto de Física Fundamental, CSIC Serrano 123, 28006 Madrid, Spain.
J Chem Phys. 2015 Apr 21;142(15):154301. doi: 10.1063/1.4916615.
In order to study the Au(-) + H2 collision, a new global potential energy surface (PES) describing the ground electronic state of AuH2(-) system is developed and compared with the PESs of the neutral [Zanchet et al., J. Chem. Phys. 132, 034301 (2010)] and cationic systems [Anaís et al., J. Chem. Phys. 135, 091102 (2011)]. We found that Au(-) - H2 presents a H-Au-H insertion minimum attributed to the stabilization of the LUMO 3b2 orbital, which can be considered as the preamble of the chemisorption well appearing in larger gold clusters. While the LUMO orbital is stabilized, the HOMO 6a1 is destabilized, creating a barrier at the geometry where the energy orbitals' curves are crossing. In the anion, this HOMO is doubly occupied, while in the neutral system is half-filled and completely empty in the cation, explaining the gradual disappearance of the well and the barrier as the number of electrons decreases. The cation presents a well in the entrance channel partially explained by electrostatic interactions. The three systems' reactions are highly endothermic, by 1.66, 2.79, and 3.23 eV for AuH, AuH(+), and AuH(-) products, respectively. The reaction dynamics is studied using quasi-classical trajectory method for the three systems. The one corresponding to the anionic system is new in this work. Collision energies between 1.00 and 8.00 eV, measured for the cation, are in good agreement with the simulated cross section for the AuH(+). It was also found that the total fragmentation, in three atoms, competes becoming dominant at sufficiently high energy. Here, we study the competition between the two different reaction pathways for the anionic, cationic, and neutral species, explaining the differences using a simple model based on the topology of the potential energy surfaces.
为了研究Au(-)+H₂碰撞,我们开发了一种描述AuH₂(-)体系基态电子态的新的全局势能面(PES),并将其与中性体系[赞切特等人,《化学物理杂志》132, 034301 (2010)]和阳离子体系[阿奈斯等人,《化学物理杂志》135, 091102 (2011)]的PES进行比较。我们发现Au(-)-H₂呈现出一个H-Au-H插入最小值,这归因于LUMO 3b₂轨道的稳定化,该轨道可被视为较大金簇中出现的化学吸附阱的前奏。虽然LUMO轨道稳定了,但HOMO 6a₁轨道不稳定,在能量轨道曲线交叉的几何构型处形成了一个势垒。在阴离子中,这个HOMO被双重占据,而在中性体系中是半充满的,在阳离子中则完全空着,这解释了随着电子数减少阱和势垒逐渐消失的现象。阳离子在入口通道呈现出一个阱,这部分地由静电相互作用解释。对于AuH、AuH(+)和AuH(-)产物,这三个体系的反应都是高度吸热的,分别为1.66、2.79和3.23电子伏特。使用准经典轨迹方法研究了这三个体系的反应动力学。对应于阴离子体系的研究是本工作中的新内容。对于阳离子体系测量的1.00至8.00电子伏特之间的碰撞能量,与AuH(+)的模拟截面吻合良好。还发现,在足够高的能量下,分解为三个原子的总碎片化竞争变得占主导地位。在这里,我们研究了阴离子、阳离子和中性物种的两种不同反应途径之间的竞争,使用基于势能面拓扑结构的简单模型解释了这些差异。