Suppr超能文献

用于耦合偏微分方程和基于房室的扩散模型的伪房室方法。

The pseudo-compartment method for coupling partial differential equation and compartment-based models of diffusion.

作者信息

Yates Christian A, Flegg Mark B

机构信息

Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK

School of Mathematical Sciences, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.

出版信息

J R Soc Interface. 2015 May 6;12(106). doi: 10.1098/rsif.2015.0141.

Abstract

Spatial reaction-diffusion models have been employed to describe many emergent phenomena in biological systems. The modelling technique most commonly adopted in the literature implements systems of partial differential equations (PDEs), which assumes there are sufficient densities of particles that a continuum approximation is valid. However, owing to recent advances in computational power, the simulation and therefore postulation, of computationally intensive individual-based models has become a popular way to investigate the effects of noise in reaction-diffusion systems in which regions of low copy numbers exist. The specific stochastic models with which we shall be concerned in this manuscript are referred to as 'compartment-based' or 'on-lattice'. These models are characterized by a discretization of the computational domain into a grid/lattice of 'compartments'. Within each compartment, particles are assumed to be well mixed and are permitted to react with other particles within their compartment or to transfer between neighbouring compartments. Stochastic models provide accuracy, but at the cost of significant computational resources. For models that have regions of both low and high concentrations, it is often desirable, for reasons of efficiency, to employ coupled multi-scale modelling paradigms. In this work, we develop two hybrid algorithms in which a PDE in one region of the domain is coupled to a compartment-based model in the other. Rather than attempting to balance average fluxes, our algorithms answer a more fundamental question: 'how are individual particles transported between the vastly different model descriptions?' First, we present an algorithm derived by carefully redefining the continuous PDE concentration as a probability distribution. While this first algorithm shows very strong convergence to analytical solutions of test problems, it can be cumbersome to simulate. Our second algorithm is a simplified and more efficient implementation of the first, it is derived in the continuum limit over the PDE region alone. We test our hybrid methods for functionality and accuracy in a variety of different scenarios by comparing the averaged simulations with analytical solutions of PDEs for mean concentrations.

摘要

空间反应扩散模型已被用于描述生物系统中的许多涌现现象。文献中最常用的建模技术是实现偏微分方程(PDEs)系统,该系统假设存在足够的粒子密度,使得连续近似有效。然而,由于计算能力的最新进展,对计算密集型基于个体的模型进行模拟并因此进行假设,已成为研究存在低拷贝数区域的反应扩散系统中噪声影响的一种流行方法。我们将在本手稿中关注的特定随机模型被称为“基于隔室”或“在格点上”。这些模型的特点是将计算域离散化为“隔室”的网格/格点。在每个隔室内,假设粒子充分混合,并允许与隔室内的其他粒子反应或在相邻隔室之间转移。随机模型提供了准确性,但代价是需要大量的计算资源。对于既有低浓度区域又有高浓度区域的模型,出于效率考虑,通常希望采用耦合多尺度建模范式。在这项工作中,我们开发了两种混合算法,其中域的一个区域中的PDE与另一个区域中的基于隔室的模型耦合。我们的算法不是试图平衡平均通量,而是回答一个更基本的问题:“单个粒子如何在截然不同的模型描述之间传输?”首先,我们提出一种算法,该算法通过仔细地将连续PDE浓度重新定义为概率分布而得出。虽然第一种算法在测试问题的解析解方面显示出非常强的收敛性,但模拟起来可能很麻烦。我们的第二种算法是第一种算法的简化且更高效的实现,它仅在PDE区域的连续极限中得出。我们通过将平均模拟结果与PDEs的平均浓度解析解进行比较,在各种不同场景下测试我们的混合方法的功能和准确性。

相似文献

2
A hybrid algorithm for coupling partial differential equation and compartment-based dynamics.
J R Soc Interface. 2016 Sep;13(122). doi: 10.1098/rsif.2016.0335.
3
Multiscale Stochastic Reaction-Diffusion Algorithms Combining Markov Chain Models with Stochastic Partial Differential Equations.
Bull Math Biol. 2019 Aug;81(8):3185-3213. doi: 10.1007/s11538-019-00613-0. Epub 2019 Jun 4.
4
The auxiliary region method: a hybrid method for coupling PDE- and Brownian-based dynamics for reaction-diffusion systems.
R Soc Open Sci. 2018 Aug 1;5(8):180920. doi: 10.1098/rsos.180920. eCollection 2018 Aug.
5
The blending region hybrid framework for the simulation of stochastic reaction-diffusion processes.
J R Soc Interface. 2020 Oct;17(171):20200563. doi: 10.1098/rsif.2020.0563. Epub 2020 Oct 21.
7
Exact on-lattice stochastic reaction-diffusion simulations using partial-propensity methods.
J Chem Phys. 2011 Dec 28;135(24):244103. doi: 10.1063/1.3666988.
8
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
9
Stochastic Turing patterns: analysis of compartment-based approaches.
Bull Math Biol. 2014 Dec;76(12):3051-69. doi: 10.1007/s11538-014-0044-6. Epub 2014 Nov 25.
10
Stochastic reaction-diffusion algorithms for macromolecular crowding.
Phys Biol. 2016 Jun 25;13(3):036010. doi: 10.1088/1478-3975/13/3/036010.

引用本文的文献

1
Patch formation driven by stochastic effects of interaction between viruses and defective interfering particles.
PLoS Comput Biol. 2023 Oct 2;19(10):e1011513. doi: 10.1371/journal.pcbi.1011513. eCollection 2023 Oct.
2
Incorporating domain growth into hybrid methods for reaction-diffusion systems.
J R Soc Interface. 2021 Apr;18(177):20201047. doi: 10.1098/rsif.2020.1047. Epub 2021 Apr 14.
3
A multiscale model of complex endothelial cell dynamics in early angiogenesis.
PLoS Comput Biol. 2021 Jan 7;17(1):e1008055. doi: 10.1371/journal.pcbi.1008055. eCollection 2021 Jan.
4
The blending region hybrid framework for the simulation of stochastic reaction-diffusion processes.
J R Soc Interface. 2020 Oct;17(171):20200563. doi: 10.1098/rsif.2020.0563. Epub 2020 Oct 21.
5
Multiscale Stochastic Reaction-Diffusion Algorithms Combining Markov Chain Models with Stochastic Partial Differential Equations.
Bull Math Biol. 2019 Aug;81(8):3185-3213. doi: 10.1007/s11538-019-00613-0. Epub 2019 Jun 4.
6
The auxiliary region method: a hybrid method for coupling PDE- and Brownian-based dynamics for reaction-diffusion systems.
R Soc Open Sci. 2018 Aug 1;5(8):180920. doi: 10.1098/rsos.180920. eCollection 2018 Aug.
7
Spatially extended hybrid methods: a review.
J R Soc Interface. 2018 Feb;15(139). doi: 10.1098/rsif.2017.0931.
8
Mesoscopic-microscopic spatial stochastic simulation with automatic system partitioning.
J Chem Phys. 2017 Dec 21;147(23):234101. doi: 10.1063/1.5002773.
10
A hybrid algorithm for coupling partial differential equation and compartment-based dynamics.
J R Soc Interface. 2016 Sep;13(122). doi: 10.1098/rsif.2016.0335.

本文引用的文献

1
Convergence of methods for coupling of microscopic and mesoscopic reaction-diffusion simulations.
J Comput Phys. 2015 May 15;289:1-17. doi: 10.1016/j.jcp.2015.01.030.
2
Adaptive two-regime method: application to front propagation.
J Chem Phys. 2014 Mar 28;140(12):124109. doi: 10.1063/1.4868652.
3
Travelling waves in hybrid chemotaxis models.
Bull Math Biol. 2014 Feb;76(2):377-400. doi: 10.1007/s11538-013-9924-4. Epub 2013 Dec 18.
4
Importance of the Voronoi domain partition for position-jump reaction-diffusion processes on nonuniform rectilinear lattices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Nov;88(5):054701. doi: 10.1103/PhysRevE.88.054701. Epub 2013 Nov 22.
5
Perspective: Stochastic algorithms for chemical kinetics.
J Chem Phys. 2013 May 7;138(17):170901. doi: 10.1063/1.4801941.
6
Multiscale stochastic reaction-diffusion modeling: application to actin dynamics in filopodia.
Bull Math Biol. 2014 Apr;76(4):799-818. doi: 10.1007/s11538-013-9844-3. Epub 2013 May 3.
7
Diffusive spatio-temporal noise in a first-passage time model for intracellular calcium release.
J Chem Phys. 2013 Apr 21;138(15):154103. doi: 10.1063/1.4796417.
8
Recycling random numbers in the stochastic simulation algorithm.
J Chem Phys. 2013 Mar 7;138(9):094103. doi: 10.1063/1.4792207.
9
Going from microscopic to macroscopic on nonuniform growing domains.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Aug;86(2 Pt 1):021921. doi: 10.1103/PhysRevE.86.021921. Epub 2012 Aug 23.
10
Hybrid spatial Gillespie and particle tracking simulation.
Bioinformatics. 2012 Sep 15;28(18):i549-i555. doi: 10.1093/bioinformatics/bts384.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验