Boakye Cedar H A, Patel Ketan, Singh Mandip
College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA.
College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA.
Int J Pharm. 2015 Jul 15;489(1-2):106-16. doi: 10.1016/j.ijpharm.2015.04.059. Epub 2015 Apr 21.
The objectives of this study were to develop an innovative investigative model using doxorubicin as a fluorophore to evaluate the skin permeation of nanocarriers and the impact of size and surface characteristics on their permeability. Different doxorubicin-loaded liposomes with mean particle size <130 nm and different surface chemistry were prepared by ammonium acetate gradient method using DPPC, DOPE, Cholesterol, DSPE-PEG 2000 and 1,1-Di-((Z)-octadec-9-en-1-yl) pyrrolidin-1-ium chloride (CY5)/DOTAP/1,2-dioleoyl-sn-glycero-3-phosphate (DOPA) as the charge modifier. There was minimal release of doxorubicin from the liposomes up to 8h; indicating that fluorescence observed within the skin layers was due to the intact liposomes. Liposomes with particle sizes >600 nm were restricted within the stratum corneum. DOTAP (p<0.01) and CY5 (p<0.05) liposomes demonstrated significant permeation into the skin than DOPA and PEG liposomes. Tape stripping significantly (p<0.01) enhanced the skin permeation of doxorubicin liposomes but TAT-decorated doxorubicin liposomes permeated better (p<0.005). Blockage of the hair follicles resulted in significant reduction in the extent and intensity of fluorescence observed within the skin layers. Overall, doxorubicin liposomes proved to be an ideal fluorophore-based model. The hair follicles were the major route utilized by the liposomes to permeate skin. Surface charge and particle size played vital roles in the extent of permeation.
本研究的目的是开发一种创新的研究模型,使用阿霉素作为荧光团来评估纳米载体的皮肤渗透情况以及尺寸和表面特性对其渗透性的影响。采用醋酸铵梯度法,以二棕榈酰磷脂酰胆碱(DPPC)、二油酰磷脂酰乙醇胺(DOPE)、胆固醇、二硬脂酰磷脂酰乙醇胺-聚乙二醇2000(DSPE-PEG 2000)以及1,1-二((Z)-十八碳-9-烯-1-基)吡咯烷-1-鎓氯化物(CY5)/二油酰基三甲基氯化铵(DOTAP)/1,2-二油酰基-sn-甘油-3-磷酸(DOPA)作为电荷修饰剂,制备了平均粒径<130 nm且具有不同表面化学性质的载阿霉素脂质体。在长达8小时的时间内,脂质体中阿霉素的释放量极少;这表明在皮肤层内观察到的荧光是由于完整的脂质体所致。粒径>600 nm的脂质体被限制在角质层内。与DOPA和PEG脂质体相比,DOTAP脂质体(p<0.01)和CY5脂质体(p<0.05)向皮肤内的渗透更为显著。胶带剥离显著(p<0.01)增强了阿霉素脂质体的皮肤渗透,但经穿膜肽(TAT)修饰的阿霉素脂质体渗透效果更佳(p<0.005)。毛囊堵塞导致皮肤层内观察到的荧光程度和强度显著降低。总体而言,阿霉素脂质体被证明是一种理想的基于荧光团的模型。毛囊是脂质体渗透皮肤所利用的主要途径。表面电荷和粒径在渗透程度方面起着至关重要的作用。