Suppr超能文献

新诊断晚期卵巢癌残留病灶预测模型的开发

Development of a prediction model for residual disease in newly diagnosed advanced ovarian cancer.

作者信息

Janco Jo Marie Tran, Glaser Gretchen, Kim Bohyun, McGree Michaela E, Weaver Amy L, Cliby William A, Dowdy Sean C, Bakkum-Gamez Jamie N

机构信息

Division of Gynecologic Surgery, Mayo Clinic, Rochester, MN, USA.

Carilion Clinic Gynecologic Oncology, Roanoke, VA, USA.

出版信息

Gynecol Oncol. 2015 Jul;138(1):70-7. doi: 10.1016/j.ygyno.2015.04.013. Epub 2015 Apr 22.

Abstract

OBJECTIVES

To construct a tool, using computed tomography (CT) imaging and preoperative clinical variables, to estimate successful primary cytoreduction for advanced epithelial ovarian cancer (EOC).

METHODS

Women who underwent primary cytoreductive surgery for stage IIIC/IV EOC at Mayo Clinic between 1/2/2003 and 12/30/2011 and had preoperative CT images of the abdomen and pelvis within 90days prior to their surgery available for review were included. CT images were reviewed for large-volume ascites, diffuse peritoneal thickening (DPT), omental cake, lymphadenopathy (LP), and spleen or liver involvement. Preoperative factors included age, body mass index (BMI), Eastern Cooperative Oncology Group performance status (ECOG PS), American Society of Anesthesiologists (ASA) score, albumin, CA-125, and thrombocytosis. Two prediction models were developed to estimate the probability of (i) complete and (ii) suboptimal cytoreduction (residual disease (RD) >1cm) using multivariable logistic analysis with backward and stepwise variable selection methods. Internal validation was assessed using bootstrap resampling to derive an optimism-corrected estimate of the c-index.

RESULTS

279 patients met inclusion criteria: 143 had complete cytoreduction, 26 had suboptimal cytoreduction (RD>1cm), and 110 had measurable RD ≤1cm. On multivariable analysis, age, absence of ascites, omental cake, and DPT on CT imaging independently predicted complete cytoreduction (c-index=0.748). Conversely, predictors of suboptimal cytoreduction were ECOG PS, DPT, and LP on preoperative CT imaging (c-index=0.685).

CONCLUSIONS

The generated models serve as preoperative evaluation tools that may improve counseling and selection for primary surgery, but need to be externally validated.

摘要

目的

利用计算机断层扫描(CT)成像和术前临床变量构建一种工具,以评估晚期上皮性卵巢癌(EOC)初次细胞减灭术的成功率。

方法

纳入2003年1月2日至2011年12月30日期间在梅奥诊所接受IIIC/IV期EOC初次细胞减灭术且术前90天内有腹部和盆腔CT图像可供复查的女性。对CT图像进行评估,以确定是否存在大量腹水、弥漫性腹膜增厚(DPT)、网膜饼、淋巴结病变(LP)以及脾脏或肝脏受累情况。术前因素包括年龄、体重指数(BMI)、东部肿瘤协作组体能状态(ECOG PS)、美国麻醉医师协会(ASA)评分、白蛋白、CA-125和血小板增多症。使用多变量逻辑分析及向后和逐步变量选择方法,开发了两个预测模型,以估计(i)完全细胞减灭和(ii)次优细胞减灭(残留病灶(RD)>1cm)的概率。使用自助重采样评估内部验证,以得出经乐观校正的c指数估计值。

结果

279例患者符合纳入标准:143例实现了完全细胞减灭,26例为次优细胞减灭(RD>1cm),110例可测量的RD≤1cm。多变量分析显示,年龄、无腹水、网膜饼以及CT成像上的DPT可独立预测完全细胞减灭(c指数=0.748)。相反,术前CT成像上预测次优细胞减灭的因素为ECOG PS、DPT和LP(c指数=0.685)。

结论

所生成的模型可作为术前评估工具,可能会改善对初次手术的咨询和选择,但需要进行外部验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验