Suppr超能文献

由于结构不同,集胞藻或植物的光合膜通过不同途径将阳光转化为光电流。

Photosynthetic Membranes of Synechocystis or Plants Convert Sunlight to Photocurrent through Different Pathways due to Different Architectures.

作者信息

Pinhassi Roy I, Kallmann Dan, Saper Gadiel, Larom Shirley, Linkov Artyom, Boulouis Alix, Schöttler Mark-Aurel, Bock Ralph, Rothschild Avner, Adir Noam, Schuster Gadi

机构信息

Grand Technion Energy Program, Technion-Israel Institute of Technology, Technion City, Haifa 32000 Israel; Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000 Israel; Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000 Israel; Department of Science and Material Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000 Israel.

Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000 Israel.

出版信息

PLoS One. 2015 Apr 27;10(4):e0122616. doi: 10.1371/journal.pone.0122616. eCollection 2015.

Abstract

Thylakoid membranes contain the redox active complexes catalyzing the light-dependent reactions of photosynthesis in cyanobacteria, algae and plants. Crude thylakoid membranes or purified photosystems from different organisms have previously been utilized for generation of electrical power and/or fuels. Here we investigate the electron transferability from thylakoid preparations from plants or the cyanobacterium Synechocystis. We show that upon illumination, crude Synechocystis thylakoids can reduce cytochrome c. In addition, this crude preparation can transfer electrons to a graphite electrode, producing an unmediated photocurrent of 15 μA/cm2. Photocurrent could be obtained in the presence of the PSII inhibitor DCMU, indicating that the source of electrons is QA, the primary Photosystem II acceptor. In contrast, thylakoids purified from plants could not reduce cyt c, nor produced a photocurrent in the photocell in the presence of DCMU. The production of significant photocurrent (100 μA/cm2) from plant thylakoids required the addition of the soluble electron mediator DCBQ. Furthermore, we demonstrate that use of crude thylakoids from the D1-K238E mutant in Synechocystis resulted in improved electron transferability, increasing the direct photocurrent to 35 μA/cm2. Applying the analogous mutation to tobacco plants did not achieve an equivalent effect. While electron abstraction from crude thylakoids of cyanobacteria or plants is feasible, we conclude that the site of the abstraction of the electrons from the thylakoids, the architecture of the thylakoid preparations influence the site of the electron abstraction, as well as the transfer pathway to the electrode. This dictates the use of different strategies for production of sustainable electrical current from photosynthetic thylakoid membranes of cyanobacteria or higher plants.

摘要

类囊体膜含有氧化还原活性复合物,可催化蓝细菌、藻类和植物中光合作用的光依赖反应。此前,来自不同生物体的粗制类囊体膜或纯化的光系统已被用于发电和/或生产燃料。在此,我们研究了来自植物或蓝细菌集胞藻的类囊体制剂的电子转移能力。我们发现,光照下,集胞藻粗制类囊体能够还原细胞色素c。此外,这种粗制制剂能够将电子转移到石墨电极上,产生15 μA/cm²的无介导光电流。在存在PSII抑制剂敌草隆(DCMU)的情况下仍可获得光电流,这表明电子来源是QA,即光系统II的初级受体。相比之下,从植物中纯化的类囊体在存在DCMU的情况下既不能还原细胞色素c,也不能在光电池中产生光电流。从植物类囊体产生显著的光电流(100 μA/cm²)需要添加可溶性电子介质2,6-二氯对苯醌(DCBQ)。此外,我们证明,使用集胞藻D1-K238E突变体的粗制类囊体可提高电子转移能力,将直接光电流提高到35 μA/cm²。在烟草植物中应用类似突变并未达到同等效果。虽然从蓝细菌或植物的粗制类囊体中提取电子是可行的,但我们得出结论,从类囊体中提取电子的位点、类囊体制剂的结构会影响电子提取位点以及向电极的转移途径。这决定了从蓝细菌或高等植物的光合类囊体膜产生可持续电流需要采用不同的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfaf/4411099/66f1ff0dd07a/pone.0122616.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验