Puerta-Gomez Alex F, Castell-Perez M Elena
Dept. of Biological and Agricultural Engineering, Texas A&M Univ., College Station, TX, 77843-2117, USA.
Biological and Agricultural Engineering Dept, Texas A&M Univ., College Station, TX, 77843-2117, USA.
J Food Sci. 2015 Jun;80(6):E1209-17. doi: 10.1111/1750-3841.12874. Epub 2015 Apr 28.
The high cost and potential toxicity of biodegradable polymers like poly(lactic-co-glycolic)acid (PLGA) has increased the interest in natural and modified biopolymers as bioactive carriers. This study characterized the physical stability (water sorption and state transition behavior) of selected starch and proteins: octenyl succinate-modified depolymerized waxy corn starch (DWxCn), waxy rice starch (DWxRc), phytoglycogen, whey protein concentrate (80%, WPC), whey protein isolate (WPI), and α-lactalbumin (α-L) to determine their potential as carriers of bioactive compounds under different environmental conditions. After enzyme modification and particle size characterization, glass transition temperature and moisture isotherms were used to characterize the systems. DWxCn and DWxRc had increased water sorption compared to native starch. The level of octenyl succinate anhydrate (OSA) modification (3% and 7%) did not reduce the water sorption of the DWxCn and phytoglycogen samples. The Guggenheim-Andersen-de Boer model indicated that native waxy corn had significantly (P < 0.05) higher water monolayer capacity followed by 3%-OSA-modified DWxCn, WPI, 3%-OSA-modified DWxRc, α-L, and native phytoglycogen. WPC had significantly lower water monolayer capacity. All Tg values matched with the solid-like appearance of the biopolymers. Native polysaccharides and whey proteins had higher glass transition temperature (Tg) values. On the other hand, depolymerized waxy starches at 7%-OSA modification had a "melted" appearance when exposed to environments with high relative humidity (above 70%) after 10 days at 23 °C. The use of depolymerized and OSA-modified polysaccharides blended with proteins created more stable blends of biopolymers. Hence, this biopolymer would be suitable for materials exposed to high humidity environments in food applications.
聚乳酸-乙醇酸共聚物(PLGA)等可生物降解聚合物的高成本和潜在毒性,增加了人们对天然和改性生物聚合物作为生物活性载体的兴趣。本研究对所选淀粉和蛋白质的物理稳定性(水吸附和状态转变行为)进行了表征:辛烯基琥珀酸酯改性解聚糯玉米淀粉(DWxCn)、糯米饭淀粉(DWxRc)、植物糖原、乳清蛋白浓缩物(80%,WPC)、乳清蛋白分离物(WPI)和α-乳白蛋白(α-L),以确定它们在不同环境条件下作为生物活性化合物载体的潜力。在进行酶改性和粒度表征后,使用玻璃化转变温度和水分等温线对体系进行表征。与天然淀粉相比,DWxCn和DWxRc的水吸附增加。辛烯基琥珀酸酐(OSA)改性水平(3%和7%)并未降低DWxCn和植物糖原样品的水吸附。Guggenheim-Andersen-de Boer模型表明,天然糯玉米的单层水容量显著(P < 0.05)更高,其次是3%-OSA改性的DWxCn、WPI、3%-OSA改性的DWxRc、α-L和天然植物糖原。WPC的单层水容量显著较低。所有的Tg值都与生物聚合物的固体外观相匹配。天然多糖和乳清蛋白具有较高的玻璃化转变温度(Tg)值。另一方面,7%-OSA改性的解聚糯淀粉在23℃下放置10天后,暴露于相对湿度较高(高于70%)的环境中时会出现“融化”外观。使用解聚和OSA改性的多糖与蛋白质混合,可形成更稳定的生物聚合物混合物。因此,这种生物聚合物适用于食品应用中暴露于高湿度环境的材料。