Suppr超能文献

在全基因组范围内预测肽介导的相互作用。

Predicting peptide-mediated interactions on a genome-wide scale.

作者信息

Chen T Scott, Petrey Donald, Garzon Jose Ignacio, Honig Barry

机构信息

Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America; Department of Systems Biology, Columbia University, New York, New York, United States of America; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America; Center for Computational Biology and Bioinformatics, Columbia University, New York, New York, United States of America.

出版信息

PLoS Comput Biol. 2015 May 4;11(5):e1004248. doi: 10.1371/journal.pcbi.1004248. eCollection 2015 May.

Abstract

We describe a method to predict protein-protein interactions (PPIs) formed between structured domains and short peptide motifs. We take an integrative approach based on consensus patterns of known motifs in databases, structures of domain-motif complexes from the PDB and various sources of non-structural evidence. We combine this set of clues using a Bayesian classifier that reports the likelihood of an interaction and obtain significantly improved prediction performance when compared to individual sources of evidence and to previously reported algorithms. Our Bayesian approach was integrated into PrePPI, a structure-based PPI prediction method that, so far, has been limited to interactions formed between two structured domains. Around 80,000 new domain-motif mediated interactions were predicted, thus enhancing PrePPI's coverage of the human protein interactome.

摘要

我们描述了一种预测结构化结构域与短肽基序之间形成的蛋白质-蛋白质相互作用(PPI)的方法。我们采用了一种基于数据库中已知基序的共有模式、来自蛋白质数据银行(PDB)的结构域-基序复合物结构以及各种非结构证据来源的综合方法。我们使用贝叶斯分类器组合这组线索,该分类器报告相互作用的可能性,并且与单独的证据来源和先前报道的算法相比,获得了显著提高的预测性能。我们的贝叶斯方法被整合到PrePPI中,PrePPI是一种基于结构的PPI预测方法,到目前为止,它仅限于两个结构化结构域之间形成的相互作用。预测了大约80000种新的由结构域-基序介导的相互作用,从而扩大了PrePPI对人类蛋白质相互作用组的覆盖范围。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验