Yoon Sunmoo, Suero-Tejeda Niurka, Bakken Suzanne
J Gerontol Nurs. 2015 Jul;41(7):14-20. doi: 10.3928/00989134-20150420-01. Epub 2015 May 7.
The current study applied innovative data mining techniques to a community survey dataset to develop prediction models for two aspects of physical activity (i.e., active transport and screen time) in a sample of urban, primarily Hispanic, older adults (N=2,514). Main predictors for active transport (accuracy=69.29%, precision=0.67, recall=0.69) were immigrant status, high level of anxiety, having a place for physical activity, and willingness to make time for physical activity. The main predictors for screen time (accuracy=63.13%, precision=0.60, recall=0.63) were willingness to make time for exercise, having a place for exercise, age, and availability of family support to access health information on the Internet. Data mining methods were useful to identify intervention targets and inform design of customized interventions.
本研究将创新的数据挖掘技术应用于一项社区调查数据集,以针对城市中主要为西班牙裔的老年人样本(N = 2514)的身体活动的两个方面(即主动出行和屏幕使用时间)开发预测模型。主动出行的主要预测因素(准确率 = 69.29%,精确率 = 0.67,召回率 = 0.69)包括移民身份、高度焦虑、有进行体育活动的场所,以及愿意抽出时间进行体育活动。屏幕使用时间的主要预测因素(准确率 = 63.13%,精确率 = 0.60,召回率 = 0.63)包括愿意抽出时间锻炼、有锻炼场所、年龄,以及家人支持获取互联网健康信息的情况。数据挖掘方法有助于确定干预目标并为定制干预措施的设计提供依据。