Suppr超能文献

利用微流控芯片中光诱导电场测量单个白血病细胞的密度和质量。

Measurement of single leukemia cell's density and mass using optically induced electric field in a microfluidics chip.

机构信息

Department of Mechanical and Biomedical Engineering, City University of Hong Kong , Kowloon, Hong Kong.

Department of Power Mechanical Engineering, National Tsing Hua University , Hsinchu, Taiwan.

出版信息

Biomicrofluidics. 2015 Apr 17;9(2):022406. doi: 10.1063/1.4917290. eCollection 2015 Mar.

Abstract

We present a method capable of rapidly (∼20 s) determining the density and mass of a single leukemic cell using an optically induced electrokinetics (OEK) platform. Our team had reported recently on a technique that combines sedimentation theory, computer vision, and micro particle manipulation techniques on an OEK microfluidic platform to determine the mass and density of micron-scale entities in a fluidic medium; the mass and density of yeast cells were accurately determined in that prior work. In the work reported in this paper, we further refined the technique by performing significantly more experiments to determine a universal correction factor to Stokes' equation in expressing the drag force on a microparticle as it falls towards an infinite plane. Specifically, a theoretical model for micron-sized spheres settling towards an infinite plane in a microfluidic environment is presented, and which was validated experimentally using five different sizes of micro polystyrene beads. The same sedimentation process was applied to two kinds of leukemic cancer cells with similar sizes in an OEK platform, and their density and mass were determined accordingly. Our tests on mouse lymphocytic leukemia cells (L1210) and human leukemic cells (HL-60) have verified the practical viability of this method. Potentially, this new method provides a new way of measuring the volume, density, and mass of a single cell in an accurate, selective, and repeatable manner.

摘要

我们提出了一种方法,能够使用光诱导电泳(OEK)平台快速(约 20 秒)确定单个白血病细胞的密度和质量。我们的团队最近报道了一种技术,该技术结合了沉降理论、计算机视觉和微粒子操纵技术在 OEK 微流控平台上,以确定流体介质中微米级实体的质量和密度;在之前的工作中,准确地确定了酵母细胞的质量和密度。在本文报告的工作中,我们通过进行更多的实验进一步改进了该技术,以确定在将微粒子向下推向无限平面时表达阻力的斯托克斯方程的通用校正因子。具体来说,提出了一种用于在微流控环境中沉降到无限平面的微米级球体的理论模型,并使用五种不同尺寸的微聚苯乙烯珠进行了实验验证。将相同的沉降过程应用于 OEK 平台中具有相似尺寸的两种白血病癌细胞,并相应地确定了它们的密度和质量。我们对小鼠淋巴细胞白血病细胞(L1210)和人类白血病细胞(HL-60)的测试验证了该方法的实际可行性。潜在地,这种新方法提供了一种以准确、选择性和可重复的方式测量单个细胞体积、密度和质量的新方法。

相似文献

8
Thermometry of photosensitive and optically induced electrokinetics chips.光敏和光诱导电动芯片的温度测量
Microsyst Nanoeng. 2018 Aug 27;4:26. doi: 10.1038/s41378-018-0029-y. eCollection 2018.

引用本文的文献

本文引用的文献

2
Settled and unsettled issues in particle settling.颗粒沉降中的已解决和未解决问题。
Rep Prog Phys. 2014 May;77(5):056602. doi: 10.1088/0034-4885/77/5/056602. Epub 2014 May 6.
10
Measuring single-cell density.测量单细胞密度。
Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):10992-6. doi: 10.1073/pnas.1104651108. Epub 2011 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验