Suppr超能文献

一种用于分布式摄像机网络中多目标跟踪的新型平方根容积信息加权一致性滤波算法。

A novel square-root cubature information weighted consensus filter algorithm for multi-target tracking in distributed camera networks.

作者信息

Chen Yanming, Zhao Qingjie

机构信息

Beijing Key Laboratory of Intelligence Information Technology, School of Computer Science, Beijing Institute of Technology, Beijing 100081, China.

出版信息

Sensors (Basel). 2015 May 5;15(5):10526-46. doi: 10.3390/s150510526.

Abstract

This paper deals with the problem of multi-target tracking in a distributed camera network using the square-root cubature information filter (SCIF). SCIF is an efficient and robust nonlinear filter for multi-sensor data fusion. In camera networks, multiple cameras are arranged in a dispersed manner to cover a large area, and the target may appear in the blind area due to the limited field of view (FOV). Besides, each camera might receive noisy measurements. To overcome these problems, this paper proposes a novel multi-target square-root cubature information weighted consensus filter (MTSCF), which reduces the effect of clutter or spurious measurements using joint probabilistic data association (JPDA) and proper weights on the information matrix and information vector. The simulation results show that the proposed algorithm can efficiently track multiple targets in camera networks and is obviously better in terms of accuracy and stability than conventional multi-target tracking algorithms.

摘要

本文探讨了使用平方根容积信息滤波器(SCIF)在分布式摄像机网络中进行多目标跟踪的问题。SCIF是一种用于多传感器数据融合的高效且强大的非线性滤波器。在摄像机网络中,多个摄像机以分散的方式布置以覆盖大面积区域,并且由于有限的视场(FOV),目标可能出现在盲区。此外,每个摄像机可能会接收到有噪声的测量值。为了克服这些问题,本文提出了一种新颖的多目标平方根容积信息加权一致性滤波器(MTSCF),该滤波器使用联合概率数据关联(JPDA)以及对信息矩阵和信息向量赋予适当权重来减少杂波或虚假测量的影响。仿真结果表明,所提出的算法能够在摄像机网络中有效地跟踪多个目标,并且在准确性和稳定性方面明显优于传统的多目标跟踪算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验