Suppr超能文献

纹状体富集蛋白酪氨酸磷酸酶调节PTPα/Fyn信号通路。

Striatal-enriched protein tyrosine phosphatase regulates the PTPα/Fyn signaling pathway.

作者信息

Xu Jian, Kurup Pradeep, Foscue Ethan, Lombroso Paul J

机构信息

Child Study Center, Yale University School of Medicine, New Haven, Connecticut, USA.

出版信息

J Neurochem. 2015 Aug;134(4):629-41. doi: 10.1111/jnc.13160. Epub 2015 May 25.

Abstract

The tyrosine kinase Fyn has two regulatory tyrosine residues that when phosphorylated either activate (Tyr(420)) or inhibit (Tyr(531)) Fyn activity. Within the central nervous system, two protein tyrosine phosphatases (PTPs) target these regulatory tyrosines in Fyn. PTPα dephosphorylates Tyr(531) and activates Fyn, while STEP (STriatal-Enriched protein tyrosine Phosphatase) dephosphorylates Tyr(420) and inactivates Fyn. Thus, PTPα and STEP have opposing functions in the regulation of Fyn; however, whether there is cross talk between these two PTPs remains unclear. Here, we used molecular techniques in primary neuronal cultures and in vivo to demonstrate that STEP negatively regulates PTPα by directly dephosphorylating PTPα at its regulatory Tyr(789). Dephosphorylation of Tyr(789) prevents the translocation of PTPα to synaptic membranes, blocking its ability to interact with and activate Fyn. Genetic or pharmacologic reduction in STEP61 activity increased the phosphorylation of PTPα at Tyr(789), as well as increased translocation of PTPα to synaptic membranes. Activation of PTPα and Fyn and trafficking of GluN2B to synaptic membranes are necessary for ethanol (EtOH) intake behaviors in rodents. We tested the functional significance of STEP61 in this signaling pathway by EtOH administration to primary cultures as well as in vivo, and demonstrated that the inactivation of STEP61 by EtOH leads to the activation of PTPα, its translocation to synaptic membranes, and the activation of Fyn. These findings indicate a novel mechanism by which STEP61 regulates PTPα and suggest that STEP and PTPα coordinate the regulation of Fyn. STEP61 , PTPα, Fyn, and NMDA receptor (NMDAR) have been implicated in ethanol intake behaviors in the dorsomedial striatum (DMS) in rodents. Here, we report that PTPα is a novel substrate for STEP61. Upon ethanol exposure, STEP61 is phosphorylated and inactivated by protein kinase A (PKA) signaling in the DMS. As a result of STEP61 inhibition, there is an increase in the phosphorylation of PTPα, which translocates to lipid rafts and activates Fyn and subsequent NMDAR signaling. The results demonstrate a synergistic regulation of Fyn-NMDAR signaling by STEP61 and PTPα, which may contribute to the regulation of ethanol-related behaviors. NMDA, N-methyl-D-aspartate; PTPα, receptor-type protein tyrosine phosphatase alpha; STEP, STriatal-Enriched protein tyrosine Phosphatase.

摘要

酪氨酸激酶Fyn有两个调节性酪氨酸残基,磷酸化时,它们要么激活(Tyr(420))要么抑制(Tyr(531))Fyn的活性。在中枢神经系统中,两种蛋白酪氨酸磷酸酶(PTP)靶向Fyn中的这些调节性酪氨酸。PTPα使Tyr(531)去磷酸化并激活Fyn,而富含纹状体的蛋白酪氨酸磷酸酶(STEP)使Tyr(420)去磷酸化并使Fyn失活。因此,PTPα和STEP在Fyn的调节中具有相反的功能;然而,这两种PTP之间是否存在相互作用仍不清楚。在这里,我们在原代神经元培养物和体内使用分子技术来证明,STEP通过直接使PTPα的调节性Tyr(789)去磷酸化来负向调节PTPα。Tyr(789)的去磷酸化阻止了PTPα向突触膜的转运,从而阻断了其与Fyn相互作用并激活Fyn的能力。遗传性或药理学上降低STEP61的活性会增加PTPα在Tyr(789)处的磷酸化,同时也会增加PTPα向突触膜的转运。PTPα和Fyn的激活以及GluN2B向突触膜的转运对于啮齿动物的乙醇(EtOH)摄入行为是必需的。我们通过向原代培养物以及体内给予乙醇来测试STEP61在该信号通路中的功能意义,并证明乙醇使STEP61失活会导致PTPα的激活、其向突触膜的转运以及Fyn的激活。这些发现表明了一种STEP61调节PTPα的新机制,并表明STEP和PTPα协同调节Fyn。STEP61、PTPα、Fyn和N-甲基-D-天冬氨酸受体(NMDAR)与啮齿动物背内侧纹状体(DMS)中的乙醇摄入行为有关。在这里,我们报告PTPα是STEP61的一种新底物。乙醇暴露后,STEP61在DMS中被蛋白激酶A(PKA)信号磷酸化并失活。由于STEP61受到抑制,PTPα的磷酸化增加,其转运至脂筏并激活Fyn及随后的NMDAR信号。结果表明STEP61和PTPα对Fyn-NMDAR信号具有协同调节作用,这可能有助于调节与乙醇相关的行为。NMDAR,N-甲基-D-天冬氨酸;PTPα,受体型蛋白酪氨酸磷酸酶α;STEP,富含纹状体的蛋白酪氨酸磷酸酶 。

相似文献

1
Striatal-enriched protein tyrosine phosphatase regulates the PTPα/Fyn signaling pathway.
J Neurochem. 2015 Aug;134(4):629-41. doi: 10.1111/jnc.13160. Epub 2015 May 25.
2
Protein tyrosine phosphatase α in the dorsomedial striatum promotes excessive ethanol-drinking behaviors.
J Neurosci. 2013 Sep 4;33(36):14369-78. doi: 10.1523/JNEUROSCI.1954-13.2013.
6
Protein tyrosine phosphatase alpha regulates Fyn activity and Cbp/PAG phosphorylation in thymocyte lipid rafts.
J Immunol. 2005 Dec 15;175(12):7947-56. doi: 10.4049/jimmunol.175.12.7947.
9
Striatal-enriched phosphatase 61 inhibited the nociceptive plasticity in spinal cord dorsal horn of rats.
Neuroscience. 2017 Jun 3;352:97-105. doi: 10.1016/j.neuroscience.2017.03.048. Epub 2017 Apr 5.
10
Regulation of glutamate receptors by striatal-enriched tyrosine phosphatase 61 (STEP ).
J Physiol. 2021 Jan;599(2):443-451. doi: 10.1113/JP278703. Epub 2020 Apr 29.

引用本文的文献

2
Super-resolution microscopy: a closer look at synaptic dysfunction in Alzheimer disease.
Nat Rev Neurosci. 2021 Dec;22(12):723-740. doi: 10.1038/s41583-021-00531-y. Epub 2021 Nov 1.
3
Maternal Ethanol Exposure Acutely Elevates Src Family Kinase Activity in the Fetal Cortex.
Mol Neurobiol. 2021 Oct;58(10):5210-5223. doi: 10.1007/s12035-021-02467-x. Epub 2021 Jul 16.
4
The Implication of STEP in Synaptic Plasticity and Cognitive Impairments in Alzheimer's Disease and Other Neurological Disorders.
Front Cell Dev Biol. 2021 Jun 14;9:680118. doi: 10.3389/fcell.2021.680118. eCollection 2021.
5
Functions of p38 MAP Kinases in the Central Nervous System.
Front Mol Neurosci. 2020 Sep 8;13:570586. doi: 10.3389/fnmol.2020.570586. eCollection 2020.
7
8
Regulation of glutamate receptors by striatal-enriched tyrosine phosphatase 61 (STEP ).
J Physiol. 2021 Jan;599(2):443-451. doi: 10.1113/JP278703. Epub 2020 Apr 29.

本文引用的文献

1
STEP61 is a substrate of the E3 ligase parkin and is upregulated in Parkinson's disease.
Proc Natl Acad Sci U S A. 2015 Jan 27;112(4):1202-7. doi: 10.1073/pnas.1417423112. Epub 2015 Jan 12.
2
Downstream effects of striatal-enriched protein tyrosine phosphatase reduction on RNA expression in vivo and in vitro.
Neuroscience. 2014 Oct 10;278:62-9. doi: 10.1016/j.neuroscience.2014.08.002. Epub 2014 Aug 15.
7
Protein tyrosine phosphatase α in the dorsomedial striatum promotes excessive ethanol-drinking behaviors.
J Neurosci. 2013 Sep 4;33(36):14369-78. doi: 10.1523/JNEUROSCI.1954-13.2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验