Suppr超能文献

靶向类异戊二烯途径以消除肺纤维化的进展。

Targeting the isoprenoid pathway to abrogate progression of pulmonary fibrosis.

作者信息

Osborn-Heaford Heather L, Murthy Shubha, Gu Linlin, Larson-Casey Jennifer L, Ryan Alan J, Shi Lei, Glogauer Michael, Neighbors Jeffrey D, Hohl Raymond, Carter A Brent

机构信息

Department of Internal Medicine, University of Iowa.

Deparment of Medicine, University of Alabama at Birmingham, AL.

出版信息

Free Radic Biol Med. 2015 Sep;86:47-56. doi: 10.1016/j.freeradbiomed.2015.04.031. Epub 2015 May 7.

Abstract

Fibrotic remodeling in lung injury is a major cause of morbidity. The mechanism that mediates the ongoing fibrosis is unclear, and there is no available treatment to abate the aberrant repair. Reactive oxygen species (ROS) have a critical role in inducing fibrosis by modulating extracellular matrix deposition. Specifically, mitochondrial hydrogen peroxide (H2O2) production by alveolar macrophages is directly linked to pulmonary fibrosis as inhibition of mitochondrial H2O2 attenuates the fibrotic response in mice. Prior studies indicate that the small GTP-binding protein, Rac1, directly mediates H2O2 generation in the mitochondrial intermembrane space. Geranylgeranylation of the C-terminal cysteine residue (Cys(189)) is required for Rac1 activation and mitochondrial import. We hypothesized that impairment of geranylgeranylation would limit mitochondrial oxidative stress and, thus, abrogate progression of pulmonary fibrosis. By targeting the isoprenoid pathway with a novel agent, digeranyl bisphosphonate (DGBP), which impairs geranylgeranylation, we demonstrate that Rac1 mitochondrial import, mitochondrial oxidative stress, and progression of the fibrotic response to lung injury are significantly attenuated. These observations reveal that targeting the isoprenoid pathway to alter Rac1 geranylgeranylation halts the progression of pulmonary fibrosis after lung injury.

摘要

肺损伤中的纤维化重塑是发病的主要原因。介导持续性纤维化的机制尚不清楚,且尚无有效的治疗方法来减轻异常修复。活性氧(ROS)通过调节细胞外基质沉积在诱导纤维化中起关键作用。具体而言,肺泡巨噬细胞产生的线粒体过氧化氢(H2O2)与肺纤维化直接相关,因为抑制线粒体H2O2可减弱小鼠的纤维化反应。先前的研究表明,小GTP结合蛋白Rac1直接介导线粒体内膜间隙中的H2O2生成。Rac1激活和线粒体导入需要C末端半胱氨酸残基(Cys(189))的香叶基香叶基化。我们假设香叶基香叶基化受损会限制线粒体氧化应激,从而消除肺纤维化的进展。通过用一种新型药物香叶基香叶基双膦酸盐(DGBP)靶向类异戊二烯途径,该药物会损害香叶基香叶基化,我们证明Rac1线粒体导入、线粒体氧化应激以及对肺损伤的纤维化反应进展均显著减弱。这些观察结果表明,靶向类异戊二烯途径以改变Rac1香叶基香叶基化可阻止肺损伤后肺纤维化的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7047/4554879/61aa3ddab4e6/nihms-688970-f0001.jpg

相似文献

1
Targeting the isoprenoid pathway to abrogate progression of pulmonary fibrosis.靶向类异戊二烯途径以消除肺纤维化的进展。
Free Radic Biol Med. 2015 Sep;86:47-56. doi: 10.1016/j.freeradbiomed.2015.04.031. Epub 2015 May 7.

引用本文的文献

4
Role of Molecular Hydrogen in Ageing and Ageing-Related Diseases.分子氢在衰老和衰老相关疾病中的作用。
Oxid Med Cell Longev. 2022 Mar 18;2022:2249749. doi: 10.1155/2022/2249749. eCollection 2022.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验