Lisa María-Natalia, Gil Magdalena, André-Leroux Gwénaëlle, Barilone Nathalie, Durán Rosario, Biondi Ricardo M, Alzari Pedro M
Institut Pasteur, Unité de Microbiologie Structurale, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France; CNRS UMR 3528, Biologie structurale des processus cellulaires et maladies infectieuses, Institut Pasteur, 75724 Paris Cedex 15, France; Université Paris Diderot, Sorbonne Paris Cité, Microbiologie structurale, 75724 Paris Cedex 15, France.
Unidad de Bioquímica y Proteómica Analíticas, Instituto de Investigaciones Biológicas Clemente Estable e Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay.
Structure. 2015 Jun 2;23(6):1039-48. doi: 10.1016/j.str.2015.04.001. Epub 2015 May 7.
Tuberculosis remains one of the world's deadliest human diseases, with a high prevalence of antibiotic-resistant Mycobacterium tuberculosis (Mtb) strains. A molecular understanding of processes underlying regulation and adaptation of bacterial physiology may provide novel avenues for the development of antibiotics with unconventional modes of action. Here, we focus on the multidomain S/T protein kinase PknG, a soluble enzyme that controls central metabolism in Actinobacteria and has been linked to Mtb infectivity. Our biochemical and structural studies reveal how different motifs and domains flanking the catalytic core regulate substrate selectivity without significantly affecting the intrinsic kinase activity, whereas a rubredoxin-like domain is shown to downregulate catalysis through specific intramolecular interactions that modulate access to a profound substrate-binding site. Our findings provide the basis for the selective and specific inhibition of PknG, and open new questions about regulation of related bacterial and eukaryotic protein kinases.
结核病仍然是世界上最致命的人类疾病之一,耐抗生素结核分枝杆菌(Mtb)菌株的患病率很高。对细菌生理学调节和适应背后过程的分子理解可能为开发具有非常规作用模式的抗生素提供新途径。在这里,我们重点关注多结构域丝氨酸/苏氨酸蛋白激酶PknG,这是一种可溶性酶,可控制放线菌的中心代谢,并与Mtb的感染性有关。我们的生化和结构研究揭示了催化核心两侧的不同基序和结构域如何在不显著影响内在激酶活性的情况下调节底物选择性,而类红氧还蛋白结构域则通过特定的分子内相互作用下调催化作用,这些相互作用调节对一个深度底物结合位点的访问。我们的发现为PknG的选择性和特异性抑制提供了基础,并开启了关于相关细菌和真核蛋白激酶调节的新问题。