Suppr超能文献

蚊子钠通道中两个拟除虫菊酯受体位点的旋转对称性

Rotational Symmetry of Two Pyrethroid Receptor Sites in the Mosquito Sodium Channel.

作者信息

Du Yuzhe, Nomura Yoshiko, Zhorov Boris S, Dong Ke

机构信息

Department of Entomology, Genetics, and Neuroscience Programs, Michigan State University, East Lansing, Michigan (Y.D., Y.N., K.D.); Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada (B.S.Z.); and Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia (B.S.Z.).

Department of Entomology, Genetics, and Neuroscience Programs, Michigan State University, East Lansing, Michigan (Y.D., Y.N., K.D.); Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada (B.S.Z.); and Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia (B.S.Z.)

出版信息

Mol Pharmacol. 2015 Aug;88(2):273-80. doi: 10.1124/mol.115.098707. Epub 2015 May 13.

Abstract

Voltage-gated sodium channels are the primary target of pyrethroid insecticides. Although it is well known that specific mutations in insect sodium channels confer knockdown resistance (kdr) to pyrethroids, the atomic mechanisms of pyrethroid-sodium channel interactions are not clearly understood. Previously, computer modeling and mutational analysis predicted two pyrethroid receptors, pyrethroid receptor site 1 (PyR1) (initial) and pyrethroid receptor site 2 (PyR2), located in the domain interfaces II/III and I/II, respectively. The models differ in ligand orientation and the number of transmembrane helices involved. In this study, we elaborated a revised PyR1 model of the mosquito sodium channel. Computational docking in the Kv1.2-based open channel model yielded a complex in which a pyrethroid (deltamethrin) binds between the linker helix IIL45 and transmembrane helices IIS5, IIS6, and IIIS6 with its dibromoethenyl and diphenylether moieties oriented in the intra- and extracellular directions, respectively. The PyR2 and revised PyR1 models explained recently discovered kdr mutations and predicted new deltamethrin-channel contacts. Further model-driven mutagenesis identified seven new pyrethroid-sensing residues, three in the revised PyR1 and four in PyR2. Our data support the following conclusions: 1) each pyrethroid receptor is formed by a linker-helix L45 and three transmembrane helices (S5 and two S6s); 2) IIS6 contains four residues that contribute to PyR1 and another four to PyR2; 3) seven pairs of pyrethroid-sensing residues are located in symmetric positions within PyR1 and PyR2; and 4) pyrethroids bind to PyR1 and PyR2 in similar orientations, penetrating deeply into the respective domain interfaces. Our study elaborates the dual pyrethroid-receptor sites concept and provides a structural background for rational development of new insecticides.

摘要

电压门控钠通道是拟除虫菊酯类杀虫剂的主要作用靶点。虽然已知昆虫钠通道中的特定突变会赋予对拟除虫菊酯的击倒抗性(kdr),但拟除虫菊酯与钠通道相互作用的原子机制尚不清楚。此前,计算机建模和突变分析预测了两个拟除虫菊酯受体,分别是位于结构域界面II/III和I/II的拟除虫菊酯受体位点1(PyR1)(初始)和拟除虫菊酯受体位点2(PyR2)。这些模型在配体方向和涉及的跨膜螺旋数量上有所不同。在本研究中,我们精心构建了一个修订后的蚊子钠通道PyR1模型。基于Kv1.2的开放通道模型中的计算对接产生了一个复合物,其中一种拟除虫菊酯(溴氰菊酯)结合在连接螺旋IIL45与跨膜螺旋IIS5、IIS6和IIIS6之间,其二溴乙烯基和二苯醚部分分别朝向细胞内和细胞外方向。PyR2和修订后的PyR1模型解释了最近发现的kdr突变,并预测了新的溴氰菊酯与通道的接触点。进一步的模型驱动诱变鉴定出七个新的拟除虫菊酯感应残基,其中三个在修订后的PyR1中,四个在PyR2中。我们的数据支持以下结论:1)每个拟除虫菊酯受体由一个连接螺旋L45和三个跨膜螺旋(S5和两个S6)组成;2)IIS6包含四个对PyR1有贡献的残基和另外四个对PyR2有贡献的残基;3)七对拟除虫菊酯感应残基位于PyR1和PyR2内的对称位置;4)拟除虫菊酯以相似的方向与PyR1和PyR2结合,深入穿透各自的结构域界面。我们的研究阐述了双拟除虫菊酯受体位点的概念,并为合理开发新型杀虫剂提供了结构背景。

相似文献

1
Rotational Symmetry of Two Pyrethroid Receptor Sites in the Mosquito Sodium Channel.
Mol Pharmacol. 2015 Aug;88(2):273-80. doi: 10.1124/mol.115.098707. Epub 2015 May 13.
2
Evidence for Dual Binding Sites for 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) in Insect Sodium Channels.
J Biol Chem. 2016 Feb 26;291(9):4638-48. doi: 10.1074/jbc.M115.678672. Epub 2015 Dec 4.
4
A unique mechanism of transfluthrin action revealed by mapping its binding sites in the mosquito sodium channel.
Insect Biochem Mol Biol. 2024 Dec;175:104214. doi: 10.1016/j.ibmb.2024.104214. Epub 2024 Nov 19.
5
Role of mutation G255A in modulating pyrethroid sensitivity in insect sodium channels.
Int J Biol Macromol. 2025 Mar;295:139455. doi: 10.1016/j.ijbiomac.2025.139455. Epub 2025 Jan 6.
6
Characterization of two kdr mutations at predicted pyrethroid receptor site 2 in the sodium channels of Aedes aegypti and Nilaparvata lugens.
Insect Biochem Mol Biol. 2022 Sep;148:103814. doi: 10.1016/j.ibmb.2022.103814. Epub 2022 Aug 3.
8
Pyrethroids in an AlphaFold2 Model of the Insect Sodium Channel.
Insects. 2022 Aug 18;13(8):745. doi: 10.3390/insects13080745.
9
Modelling insecticide-binding sites in the voltage-gated sodium channel.
Biochem J. 2006 Jun 1;396(2):255-63. doi: 10.1042/BJ20051925.
10
Three sodium channel mutations from Aedes albopictus confer resistance to Type I, but not Type II pyrethroids.
Insect Biochem Mol Biol. 2020 Aug;123:103411. doi: 10.1016/j.ibmb.2020.103411. Epub 2020 May 22.

引用本文的文献

1
A unique mechanism of transfluthrin action revealed by mapping its binding sites in the mosquito sodium channel.
Insect Biochem Mol Biol. 2024 Dec;175:104214. doi: 10.1016/j.ibmb.2024.104214. Epub 2024 Nov 19.
3
Pyrethroids in an AlphaFold2 Model of the Insect Sodium Channel.
Insects. 2022 Aug 18;13(8):745. doi: 10.3390/insects13080745.
4
Characterization of two kdr mutations at predicted pyrethroid receptor site 2 in the sodium channels of Aedes aegypti and Nilaparvata lugens.
Insect Biochem Mol Biol. 2022 Sep;148:103814. doi: 10.1016/j.ibmb.2022.103814. Epub 2022 Aug 3.
7
Effects of Deltamethrin Acute Exposure on Nav1.6 Channels and Medium Spiny Neurons of the Nucleus Accumbens.
Toxicology. 2020 Jul;440:152488. doi: 10.1016/j.tox.2020.152488. Epub 2020 May 6.
8
Molecular evidence of sequential evolution of DDT- and pyrethroid-resistant sodium channel in Aedes aegypti.
PLoS Negl Trop Dis. 2019 Jun 3;13(6):e0007432. doi: 10.1371/journal.pntd.0007432. eCollection 2019 Jun.
9
Production of trans-chrysanthemic acid, the monoterpene acid moiety of natural pyrethrin insecticides, in tomato fruit.
Metab Eng. 2018 May;47:271-278. doi: 10.1016/j.ymben.2018.04.004. Epub 2018 Apr 9.
10
Molecular basis of selective resistance of the bumblebee BiNa1 sodium channel to tau-fluvalinate.
Proc Natl Acad Sci U S A. 2017 Dec 5;114(49):12922-12927. doi: 10.1073/pnas.1711699114. Epub 2017 Nov 20.

本文引用的文献

1
Distinct roles of the DmNav and DSC1 channels in the action of DDT and pyrethroids.
Neurotoxicology. 2015 Mar;47:99-106. doi: 10.1016/j.neuro.2015.02.001. Epub 2015 Feb 14.
2
State-dependent inter-repeat contacts of exceptionally conserved asparagines in the inner helices of sodium and calcium channels.
Pflugers Arch. 2015 Feb;467(2):253-66. doi: 10.1007/s00424-014-1508-0. Epub 2014 Apr 15.
3
Molecular biology of insect sodium channels and pyrethroid resistance.
Insect Biochem Mol Biol. 2014 Jul;50:1-17. doi: 10.1016/j.ibmb.2014.03.012. Epub 2014 Apr 3.
4
Diversity and Convergence of Sodium Channel Mutations Involved in Resistance to Pyrethroids.
Pestic Biochem Physiol. 2013 Jul 1;106(3):93-100. doi: 10.1016/j.pestbp.2013.02.007.
5
Molecular evidence for dual pyrethroid-receptor sites on a mosquito sodium channel.
Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11785-90. doi: 10.1073/pnas.1305118110. Epub 2013 Jul 2.
7
Voltage-gated sodium channels at 60: structure, function and pathophysiology.
J Physiol. 2012 Jun 1;590(11):2577-89. doi: 10.1113/jphysiol.2011.224204. Epub 2012 Apr 2.
9
State-Dependent Modification of Voltage-Gated Sodium Channels by Pyrethroids.
Pestic Biochem Physiol. 2010 Jun 1;97(2):78-86. doi: 10.1016/j.pestbp.2009.06.010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验