Suppr超能文献

滑移流区域中具有弯曲壁面的微尺度气体流动的格子玻尔兹曼模型的边界条件。

Boundary condition for lattice Boltzmann modeling of microscale gas flows with curved walls in the slip regime.

作者信息

Tao Shi, Guo Zhaoli

机构信息

State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.

Beijing Computational Science Research Center, Beijing 100084, China.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):043305. doi: 10.1103/PhysRevE.91.043305. Epub 2015 Apr 23.

Abstract

The lattice Boltzmann method (LBM) has been widely used to simulate microgaseous flows in recent years. However, it is still a challenging task for LBM to model that kind of microscale flow involving complex geometries, owing to the use of uniform Cartesian lattices in space. In this work, a boundary condition for microflows in the slip regime is developed for LBM in which the shape of a solid wall is well considered. The proposed treatment is a combination of the Maxwellian diffuse reflection scheme and the simple bounce-back method. A portion of each part is determined by the relative position between the boundary node and curved walls, which is the key point that distinguishes this method from some previous schemes where the smooth curved surface was assumed to be zigzag lines. The present curved boundary condition is implemented with the multiple-relaxation-times model and verified for several established cases, including the plane microchannel flow (aligned and inclined), microcylindrical Couette flow, and the flow over an inclined microscale airfoil. The numerical results agree well with those predicted by the direct simulation Monte Carlo method.

摘要

近年来,格子玻尔兹曼方法(LBM)已被广泛用于模拟微尺度气体流动。然而,由于在空间中使用均匀笛卡尔网格,对于LBM来说,对涉及复杂几何形状的那种微尺度流动进行建模仍然是一项具有挑战性的任务。在这项工作中,针对LBM开发了一种适用于滑移流态下微流动的边界条件,其中充分考虑了固体壁的形状。所提出的处理方法是麦克斯韦漫反射方案和简单反弹法的结合。每一部分的比例由边界节点与弯曲壁之间的相对位置确定,这是该方法与一些先前方案的关键区别,在先前方案中假设光滑曲面为折线。当前的弯曲边界条件通过多松弛时间模型实现,并针对几个已有的案例进行了验证,包括平面微通道流动(对齐和倾斜)、微圆柱库埃特流以及倾斜微尺度翼型上的流动。数值结果与直接模拟蒙特卡罗方法预测的结果吻合良好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验