Department of Clinical Genetics, Unit Clinical Genomics, Maastricht University Medical Centre, PO box 616 (box 16), 6200 MD Maastricht, The Netherlands School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, The Netherlands.
Department of Clinical Genetics, Unit Clinical Genomics, Maastricht University Medical Centre, PO box 616 (box 16), 6200 MD Maastricht, The Netherlands School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, The Netherlands
Hum Reprod Update. 2015 Sep-Oct;21(5):671-89. doi: 10.1093/humupd/dmv024. Epub 2015 May 14.
The endosymbiosis of an alpha-proteobacterium and a eubacterium a billion years ago paved the way for multicellularity and enabled eukaryotes to flourish. The selective advantage for the host was the acquired ability to generate large amounts of intracellular hydrogen-dependent adenosine triphosphate. The price was increased reactive oxygen species (ROS) inside the eukaryotic cell, causing high mutation rates of the mitochondrial DNA (mtDNA). According to the Muller's ratchet theory, this accumulation of mutations in asexually transmitted mtDNA would ultimately lead to reduced reproductive fitness and eventually extinction. However, mitochondria have persisted over the course of evolution, initially due to a rapid, extreme evolutionary reduction of the mtDNA content. After the phylogenetic divergence of eukaryotes into animals, fungi and plants, differences in evolution of the mtDNA occurred with different adaptations for coping with the mutation burden within these clades. As a result, mitochondrial evolutionary mechanisms have had a profound effect on human adaptation, fertility, healthy reproduction, mtDNA disease manifestation and transmission and ageing. An understanding of these mechanisms might elucidate novel approaches for treatment and prevention of mtDNA disease.
The scientific literature was investigated to determine how mtDNA evolved in animals, plants and fungi. Furthermore, the different mechanisms of mtDNA inheritance and of balancing Muller's ratchet in these species were summarized together with the consequences of these mechanisms for human health and reproduction.
Animal, plant and fungal mtDNA have evolved differently. Animals have compact genomes, little recombination, a stable number of genes and a high mtDNA copy number, whereas plants have larger genomes with variable gene counts, a low mtDNA copy number and many recombination events. Fungal mtDNA is somewhere in between. In plants, the mtDNA mutation rate is kept low by effective ROS defence and efficient recombination-mediated mtDNA repair. In animal mtDNA, these mechanisms are not or less well-developed and the detrimental mutagenesis events are controlled by a high mtDNA copy number in combination with a genetic bottleneck and purifying selection during transmission. The mtDNA mutation rates in animals are higher than in plants, which allow mobile animals to adapt more rapidly to various environmental conditions in terms of energy production, whereas static plants do not have this need. Although at the level of the species, these mechanisms have been extremely successful, they can have adverse effects for the individual, resulting, in humans, in severe or unpredictably segregating mtDNA diseases, as well as fertility problems and unhealthy ageing.
Understanding the forces and processes that underlie mtDNA evolution among different species increases our knowledge on the detrimental consequences that individuals can have from these evolutionary end-points. Alternative outcomes in animals, fungi and plants will lead to a better understanding of the inheritance of mtDNA disorders and mtDNA-related fertility problems. These will allow the development of options to ameliorate, cure and/or prevent mtDNA diseases and mtDNA-related fertility problems.
大约 10 亿年前,一种α变形菌与真细菌的内共生为多细胞生物的出现铺平了道路,并使真核生物得以繁荣。宿主的选择优势是获得了大量产生依赖于氢的细胞内三磷酸腺苷的能力。代价是真核细胞内的活性氧(ROS)增加,导致线粒体 DNA(mtDNA)的高突变率。根据 Muller 的棘轮理论,这种在无性繁殖的 mtDNA 中积累的突变最终会导致生殖适应性降低,并最终导致灭绝。然而,线粒体在进化过程中得以保留,最初是由于 mtDNA 含量的快速、极端的进化减少。在真核生物进化为动物、真菌和植物之后,mtDNA 的进化出现了差异,不同的适应策略应对着各自进化枝内的突变负担。因此,线粒体的进化机制对人类的适应、生育能力、健康繁殖、mtDNA 疾病表现和传播以及衰老产生了深远的影响。了解这些机制可能会为 mtDNA 疾病的治疗和预防提供新的方法。
调查了科学文献,以确定动物、植物和真菌中的 mtDNA 是如何进化的。此外,还总结了这些物种中 mtDNA 遗传和平衡 Muller 棘轮的不同机制,以及这些机制对人类健康和生殖的影响。
动物、植物和真菌的 mtDNA 进化方式不同。动物具有紧凑的基因组、很少的重组、稳定数量的基因和高 mtDNA 拷贝数,而植物具有更大的基因组,基因数量可变,mtDNA 拷贝数低,并且有许多重组事件。真菌 mtDNA 处于两者之间。在植物中,有效的 ROS 防御和有效的重组介导的 mtDNA 修复使 mtDNA 突变率保持较低水平。在动物 mtDNA 中,这些机制不发达或不太发达,有害的诱变事件通过 mtDNA 拷贝数高与在传递过程中的遗传瓶颈和纯化选择相结合来控制。动物的 mtDNA 突变率高于植物,这使得运动动物能够更迅速地适应各种环境条件下的能量产生,而静态植物则没有这种需要。尽管从物种层面来看,这些机制已经非常成功,但它们可能对个体产生不利影响,导致人类出现严重或不可预测的 mtDNA 疾病,以及生育问题和不健康的衰老。
了解不同物种中 mtDNA 进化的力量和过程可以增加我们对个体从这些进化终点可能产生的有害后果的认识。动物、真菌和植物的不同结果将导致对 mtDNA 疾病的遗传和 mtDNA 相关生育问题的更好理解。这将为改善、治愈和/或预防 mtDNA 疾病和 mtDNA 相关生育问题提供选择。