Suppr超能文献

对A、B和C类G蛋白偶联受体(GPCR)的配体识别和选择性的结构见解。

Structural insights into ligand recognition and selectivity for classes A, B, and C GPCRs.

作者信息

Lee Sang-Min, Booe Jason M, Pioszak Augen A

机构信息

Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.

Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.

出版信息

Eur J Pharmacol. 2015 Sep 15;763(Pt B):196-205. doi: 10.1016/j.ejphar.2015.05.013. Epub 2015 May 14.

Abstract

The G protein-coupled receptor (GPCR) superfamily constitutes the largest collection of cell surface signaling proteins with approximately 800 members in the human genome. GPCRs regulate virtually all aspects of physiology and they are an important class of drug targets with ~30% of drugs on the market targeting a GPCR. Breakthroughs in GPCR structural biology in recent years have significantly expanded our understanding of GPCR structure and function and ushered in a new era of structure-based drug design for GPCRs. Crystal structures for nearly thirty distinct GPCRs are now available including receptors from each of the major classes, A, B, C, and F. These structures provide a foundation for understanding the molecular basis of GPCR pharmacology. Here, we review structural mechanisms of ligand recognition and selectivity of GPCRs with a focus on selected examples from classes A, B, and C, and we highlight major unresolved questions for future structural studies.

摘要

G蛋白偶联受体(GPCR)超家族是细胞表面信号蛋白中数量最多的一类,人类基因组中约有800个成员。GPCR几乎调节着生理学的各个方面,并且是一类重要的药物靶点,市场上约30%的药物靶向GPCR。近年来,GPCR结构生物学的突破显著扩展了我们对GPCR结构和功能的理解,并开创了基于结构的GPCR药物设计新时代。目前已有近30种不同GPCR的晶体结构,包括A、B、C和F类中的每一类受体。这些结构为理解GPCR药理学的分子基础提供了依据。在此,我们回顾GPCR配体识别和选择性的结构机制,重点关注A、B和C类中的选定实例,并突出未来结构研究中主要未解决的问题。

相似文献

1
Structural insights into ligand recognition and selectivity for classes A, B, and C GPCRs.
Eur J Pharmacol. 2015 Sep 15;763(Pt B):196-205. doi: 10.1016/j.ejphar.2015.05.013. Epub 2015 May 14.
2
GPCR crystal structures: Medicinal chemistry in the pocket.
Bioorg Med Chem. 2015 Jul 15;23(14):3880-906. doi: 10.1016/j.bmc.2014.12.034. Epub 2014 Dec 24.
3
X-ray structure breakthroughs in the GPCR transmembrane region.
Biochem Pharmacol. 2009 Jul 1;78(1):11-20. doi: 10.1016/j.bcp.2009.02.012. Epub 2009 Feb 27.
4
A Molecular Pharmacologist's Guide to G Protein-Coupled Receptor Crystallography.
Mol Pharmacol. 2015 Sep;88(3):536-51. doi: 10.1124/mol.115.099663. Epub 2015 Jul 7.
5
Comparing Class A GPCRs to bitter taste receptors: Structural motifs, ligand interactions and agonist-to-antagonist ratios.
Methods Cell Biol. 2016;132:401-27. doi: 10.1016/bs.mcb.2015.10.005. Epub 2015 Dec 24.
7
GPCR structures in drug design, emerging opportunities with new structures.
Bioorg Med Chem Lett. 2014 Sep 1;24(17):4073-9. doi: 10.1016/j.bmcl.2014.07.009. Epub 2014 Jul 10.
8
Toward fluorescent probes for G-protein-coupled receptors (GPCRs).
J Med Chem. 2014 Oct 23;57(20):8187-203. doi: 10.1021/jm401823z. Epub 2014 Jul 10.
9
Class A GPCRs: Structure, Function, Modeling and Structure-based Ligand Design.
Curr Pharm Des. 2017 Nov 16;23(29):4390-4409. doi: 10.2174/1381612823666170710151255.
10
Emerging structural insights into biased GPCR signaling.
Trends Biochem Sci. 2014 Dec;39(12):594-602. doi: 10.1016/j.tibs.2014.10.001. Epub 2014 Nov 4.

引用本文的文献

1
Phylogenetic and Structural Insights into Melatonin Receptors in Plants: Case Study in Jacq.
Plants (Basel). 2025 Jun 26;14(13):1952. doi: 10.3390/plants14131952.
2
Dynamic Mechanism for Subtype Selectivity of Endocannabinoids.
bioRxiv. 2024 Oct 29:2024.10.25.620304. doi: 10.1101/2024.10.25.620304.
3
analysis of crustacean hyperglycemic hormone family G protein-coupled receptor candidates.
Front Endocrinol (Lausanne). 2024 Jan 9;14:1322800. doi: 10.3389/fendo.2023.1322800. eCollection 2023.
5
Molecular simulations of SSTR2 dynamics and interaction with ligands.
Sci Rep. 2023 Mar 23;13(1):4768. doi: 10.1038/s41598-023-31823-1.
6
New Insights into the Structure and Function of Class B1 GPCRs.
Endocr Rev. 2023 May 8;44(3):492-517. doi: 10.1210/endrev/bnac033.
7
Transactivation of receptor tyrosine kinases by purinergic P2Y and adenosine receptors.
Purinergic Signal. 2023 Dec;19(4):613-621. doi: 10.1007/s11302-022-09913-y. Epub 2022 Dec 19.
9
The Science Behind G Protein-Coupled Receptors (GPCRs) and Their Accurate Visual Representation in Scientific Research.
J Biocommun. 2017 May 4;41(1):e6. doi: 10.5210/jbc.v41i1.7309. eCollection 2017.
10
Activation and Speciation Mechanisms in Class A GPCRs.
J Mol Biol. 2022 Sep 15;434(17):167690. doi: 10.1016/j.jmb.2022.167690. Epub 2022 Jun 18.

本文引用的文献

1
Structure and function of serotonin G protein-coupled receptors.
Pharmacol Ther. 2015 Jun;150:129-42. doi: 10.1016/j.pharmthera.2015.01.009. Epub 2015 Jan 17.
2
Visualization of arrestin recruitment by a G-protein-coupled receptor.
Nature. 2014 Aug 14;512(7513):218-222. doi: 10.1038/nature13430. Epub 2014 Jun 22.
3
Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain.
Nature. 2014 Jul 31;511(7511):557-62. doi: 10.1038/nature13396. Epub 2014 Jul 6.
4
Muscarinic acetylcholine receptors: novel opportunities for drug development.
Nat Rev Drug Discov. 2014 Jul;13(7):549-60. doi: 10.1038/nrd4295. Epub 2014 Jun 6.
5
Structure of Class B GPCRs: new horizons for drug discovery.
Br J Pharmacol. 2014 Jul;171(13):3132-45. doi: 10.1111/bph.12689.
6
Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator.
Science. 2014 Apr 4;344(6179):58-64. doi: 10.1126/science.1249489. Epub 2014 Mar 6.
7
Unifying family A GPCR theories of activation.
Pharmacol Ther. 2014 Jul;143(1):51-60. doi: 10.1016/j.pharmthera.2014.02.004. Epub 2014 Feb 19.
8
Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli.
Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):E655-62. doi: 10.1073/pnas.1317903111. Epub 2014 Jan 22.
9
Structure-based drug design for G protein-coupled receptors.
Prog Med Chem. 2014;53:1-63. doi: 10.1016/B978-0-444-63380-4.00001-9.
10
Molecular control of δ-opioid receptor signalling.
Nature. 2014 Feb 13;506(7487):191-6. doi: 10.1038/nature12944. Epub 2014 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验