Shankar Varun, Wright Grady B, Kirby Robert M, Fogelson Aaron L
School of Computing, University of Utah, Salt Lake City, UT 84112.
Department of Mathematics, Boise State University, Boise, ID 83725-1555.
J Sci Comput. 2016 Jun 1;63(3):745-768. doi: 10.1007/s10915-014-9914-1.
In this paper, we present a method based on Radial Basis Function (RBF)-generated Finite Differences (FD) for numerically solving diffusion and reaction-diffusion equations (PDEs) on closed surfaces embedded in ℝ . Our method uses a method-of-lines formulation, in which surface derivatives that appear in the PDEs are approximated using RBF interpolation. The method requires only scattered nodes representing the surface and normal vectors at those scattered nodes. All computations use only extrinsic coordinates, thereby avoiding coordinate distortions and singularities. We also present an optimization procedure that allows for the stabilization of the discrete differential operators generated by our RBF-FD method by selecting shape parameters for each stencil that correspond to a global target condition number. We show the convergence of our method on two surfaces for different stencil sizes, and present applications to nonlinear PDEs simulated both on implicit/parametric surfaces and more general surfaces represented by point clouds.
在本文中,我们提出了一种基于径向基函数(RBF)生成的有限差分(FD)的方法,用于数值求解嵌入在ℝ中的封闭曲面上的扩散方程和反应扩散方程(偏微分方程)。我们的方法采用线方法公式,其中偏微分方程中出现的表面导数使用RBF插值进行近似。该方法仅需要表示曲面的离散节点以及这些离散节点处的法向量。所有计算仅使用外在坐标,从而避免坐标扭曲和奇点。我们还提出了一种优化程序,通过为每个模板选择与全局目标条件数相对应的形状参数,来稳定我们的RBF-FD方法生成的离散微分算子。我们展示了我们的方法在两个曲面上针对不同模板大小的收敛性,并展示了在隐式/参数曲面以及由点云表示的更一般曲面上模拟的非线性偏微分方程的应用。