Suppr超能文献

在环境暴露回归模型中选择协变量的空间尺度。

Selecting spatial scale of covariates in regression models of environmental exposures.

作者信息

Grant Lauren P, Gennings Chris, Wheeler David C

机构信息

Virginia Commonwealth University, Richmond, VA, USA.

Icahn School of Medicine at Mount Sinai, New York, NY, USA.

出版信息

Cancer Inform. 2015 Apr 27;14(Suppl 2):81-96. doi: 10.4137/CIN.S17302. eCollection 2015.

Abstract

Environmental factors or socioeconomic status variables used in regression models to explain environmental chemical exposures or health outcomes are often in practice modeled at the same buffer distance or spatial scale. In this paper, we present four model selection algorithms that select the best spatial scale for each buffer-based or area-level covariate. Contamination of drinking water by nitrate is a growing problem in agricultural areas of the United States, as ingested nitrate can lead to the endogenous formation of N-nitroso compounds, which are potent carcinogens. We applied our methods to model nitrate levels in private wells in Iowa. We found that environmental variables were selected at different spatial scales and that a model allowing spatial scale to vary across covariates provided the best goodness of fit. Our methods can be applied to investigate the association between environmental risk factors available at multiple spatial scales or buffer distances and measures of disease, including cancers.

摘要

在回归模型中用于解释环境化学暴露或健康结果的环境因素或社会经济地位变量,在实际应用中通常是在相同的缓冲距离或空间尺度上进行建模。在本文中,我们提出了四种模型选择算法,这些算法可为每个基于缓冲区或区域水平的协变量选择最佳空间尺度。在美国农业地区,硝酸盐对饮用水的污染问题日益严重,因为摄入的硝酸盐会导致内源性亚硝基化合物的形成,而亚硝基化合物是强效致癌物。我们将我们的方法应用于爱荷华州私人水井中硝酸盐水平的建模。我们发现环境变量是在不同空间尺度上被选择的,并且一个允许空间尺度随协变量变化的模型具有最佳的拟合优度。我们的方法可用于研究在多个空间尺度或缓冲距离上可用的环境风险因素与疾病指标(包括癌症)之间的关联。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验