Suppr超能文献

双峰和高次谐波原子力显微镜中用于高材料对比度的多本征模控制

Multi-eigenmode control for high material contrast in bimodal and higher harmonic atomic force microscopy.

作者信息

Schuh Andreas, Bozchalooi Iman Soltani, Rangelow Ivo W, Youcef-Toumi Kamal

机构信息

Massachusetts Institute of Technology, Department of Mechanical Engineering, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Ilmenau University of Technology, Faculty of Electrical Engineering and Information Technology, Dept. of Microelectronic and Nanoelectronic Systems, Gustav-Kirchhoff-Str. 1, 98684 Ilmenau, Germany.

出版信息

Nanotechnology. 2015 Jun 12;26(23):235706. doi: 10.1088/0957-4484/26/23/235706. Epub 2015 May 21.

Abstract

High speed imaging and mapping of nanomechanical properties in atomic force microscopy (AFM) allows the observation and characterization of dynamic sample processes. Recent developments involve several cantilever frequencies in a multifrequency approach. One method actuates the first eigenmode for topography imaging and records the excited higher harmonics to map nanomechanical properties of the sample. To enhance the higher frequencies' response two or more eigenmodes are actuated simultaneously, where the higher eigenmode(s) are used to quantify the nanomechanics. In this paper, we combine each imaging methodology with a novel control approach. It modifies the Q factor and resonance frequency of each eigenmode independently to enhance the force sensitivity and imaging bandwidth. It allows us to satisfy the different requirements for the first and higher eigenmode. The presented compensator is compatible with existing AFMs and can be simply attached with minimal modifications. Different samples are used to demonstrate the improvement in nanomechanical contrast mapping and imaging speed of tapping mode AFM in air. The experiments indicate most enhanced nanomechanical contrast with low Q factors of the first and high Q factors of the higher eigenmode. In this scenario, the cantilever topography imaging rate can also be easily improved by a factor of 10.

摘要

原子力显微镜(AFM)中纳米力学性能的高速成像与映射能够实现对动态样品过程的观察与表征。近期的进展包括采用多频率方法涉及多个悬臂梁频率。一种方法是驱动基模进行形貌成像,并记录激发的高次谐波以映射样品的纳米力学性能。为增强高频响应,同时驱动两个或更多的本征模,其中较高的本征模用于量化纳米力学。在本文中,我们将每种成像方法与一种新颖的控制方法相结合。它可独立修改每个本征模的品质因数和共振频率,以提高力灵敏度和成像带宽。这使我们能够满足基模和较高本征模的不同要求。所提出的补偿器与现有的原子力显微镜兼容,只需进行最少的修改就能轻松安装。使用不同的样品来展示空气中轻敲模式原子力显微镜在纳米力学对比度映射和成像速度方面的提升。实验表明,在基模品质因数较低而较高本征模品质因数较高的情况下,纳米力学对比度得到了最大程度的增强。在这种情况下,悬臂梁形貌成像速率也能轻松提高10倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验