Suppr超能文献

热耐受性的可塑性在缓冲变温动物应对全球变暖方面的潜力有限。

Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming.

作者信息

Gunderson Alex R, Stillman Jonathon H

机构信息

Romberg Tiburon Center, San Francisco State University, 3150 Paradise Drive, Tiburon, CA 94920, USA Department of Integrative Biology, University of California, 1005 Valley Life Sciences Building #3140, Berkeley, CA 94720-3140, USA

Romberg Tiburon Center, San Francisco State University, 3150 Paradise Drive, Tiburon, CA 94920, USA Department of Integrative Biology, University of California, 1005 Valley Life Sciences Building #3140, Berkeley, CA 94720-3140, USA.

出版信息

Proc Biol Sci. 2015 Jun 7;282(1808):20150401. doi: 10.1098/rspb.2015.0401.

Abstract

Global warming is increasing the overheating risk for many organisms, though the potential for plasticity in thermal tolerance to mitigate this risk is largely unknown. In part, this shortcoming stems from a lack of knowledge about global and taxonomic patterns of variation in tolerance plasticity. To address this critical issue, we test leading hypotheses for broad-scale variation in ectotherm tolerance plasticity using a dataset that includes vertebrate and invertebrate taxa from terrestrial, freshwater and marine habitats. Contrary to expectation, plasticity in heat tolerance was unrelated to latitude or thermal seasonality. However, plasticity in cold tolerance is associated with thermal seasonality in some habitat types. In addition, aquatic taxa have approximately twice the plasticity of terrestrial taxa. Based on the observed patterns of variation in tolerance plasticity, we propose that limited potential for behavioural plasticity (i.e. behavioural thermoregulation) favours the evolution of greater plasticity in physiological traits, consistent with the 'Bogert effect'. Finally, we find that all ectotherms have relatively low acclimation in thermal tolerance and demonstrate that overheating risk will be minimally reduced by acclimation in even the most plastic groups. Our analysis indicates that behavioural and evolutionary mechanisms will be critical in allowing ectotherms to buffer themselves from extreme temperatures.

摘要

全球变暖正在增加许多生物的过热风险,尽管热耐受性可塑性减轻这种风险的潜力在很大程度上尚不清楚。部分而言,这一缺陷源于对耐受性可塑性全球和分类模式缺乏了解。为解决这一关键问题,我们使用一个数据集来检验关于变温动物耐受性可塑性大规模变化的主要假设,该数据集包括来自陆地、淡水和海洋栖息地的脊椎动物和无脊椎动物类群。与预期相反,耐热性的可塑性与纬度或热季节性无关。然而,耐寒性的可塑性在某些栖息地类型中与热季节性相关。此外,水生类群的可塑性约为陆地类群的两倍。基于观察到的耐受性可塑性变化模式,我们提出行为可塑性(即行为体温调节)的有限潜力有利于生理特征更大可塑性的进化,这与“博杰特效应”一致。最后,我们发现所有变温动物在热耐受性方面的驯化程度相对较低,并证明即使在可塑性最强的类群中,驯化对过热风险的降低也微乎其微。我们的分析表明,行为和进化机制对于变温动物抵御极端温度至关重要。

相似文献

1
Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming.
Proc Biol Sci. 2015 Jun 7;282(1808):20150401. doi: 10.1098/rspb.2015.0401.
3
Thermal tolerance patterns across latitude and elevation.
Philos Trans R Soc Lond B Biol Sci. 2019 Aug 5;374(1778):20190036. doi: 10.1098/rstb.2019.0036. Epub 2019 Jun 17.
4
The complex drivers of thermal acclimation and breadth in ectotherms.
Ecol Lett. 2018 Sep;21(9):1425-1439. doi: 10.1111/ele.13107. Epub 2018 Jul 16.
5
Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species.
Philos Trans R Soc Lond B Biol Sci. 2019 Aug 5;374(1778):20180548. doi: 10.1098/rstb.2018.0548. Epub 2019 Jun 17.
6
Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence.
Comp Biochem Physiol A Mol Integr Physiol. 2016 Feb;192:64-78. doi: 10.1016/j.cbpa.2015.10.020. Epub 2015 Oct 24.
7
Substantial heat tolerance acclimation capacity in tropical thermophilic snails, but to what benefit?
J Exp Biol. 2018 Nov 16;221(Pt 22):jeb187476. doi: 10.1242/jeb.187476.
8
Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation.
Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4399-404. doi: 10.1073/pnas.1503456112. Epub 2015 Mar 24.
9
Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world.
Biol Rev Camb Philos Soc. 2020 Jun;95(3):802-821. doi: 10.1111/brv.12588. Epub 2020 Feb 8.
10
Testing the heat-invariant and cold-variability tolerance hypotheses across geographic gradients.
Comp Biochem Physiol A Mol Integr Physiol. 2014 Dec;178:46-50. doi: 10.1016/j.cbpa.2014.08.009. Epub 2014 Aug 23.

引用本文的文献

2
Variation in temperature but not diet determines the stability of latitudinal clines in tolerance traits and their plasticity.
Proc Biol Sci. 2025 Sep;292(2054):20251337. doi: 10.1098/rspb.2025.1337. Epub 2025 Sep 3.
3
Global thermal tolerance compilation for freshwater invertebrates and fish.
Sci Data. 2025 Aug 26;12(1):1488. doi: 10.1038/s41597-025-05832-w.
4
Thermal performance of the heterotrophic dinoflagellate under long-term warming and acute heat stress.
J Plankton Res. 2025 Aug 12;47(5):fbaf013. doi: 10.1093/plankt/fbaf013. eCollection 2025 Sep-Oct.
6
Pre-Exposure to Chemicals Increases Springtail Vulnerability to High Temperatures.
Glob Chang Biol. 2025 Jul;31(7):e70374. doi: 10.1111/gcb.70374.
7
Complementary genetic and epigenetic changes facilitate rapid adaptation to multiple global change stressors.
Proc Natl Acad Sci U S A. 2025 Jul 22;122(29):e2422782122. doi: 10.1073/pnas.2422782122. Epub 2025 Jul 15.
8
Climate warming will test the limits of thermal plasticity in rainbow trout, a globally distributed fish.
Conserv Physiol. 2025 May 28;13(1):coaf034. doi: 10.1093/conphys/coaf034. eCollection 2025.
10
Evolution of warming tolerance alters physiology and life history traits in zebrafish.
Nat Clim Chang. 2025;15(6):665-672. doi: 10.1038/s41558-025-02332-y. Epub 2025 May 14.

本文引用的文献

1
Evolutionary tipping points in the capacity to adapt to environmental change.
Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):184-9. doi: 10.1073/pnas.1408589111. Epub 2014 Nov 24.
2
Natural selection on thermal performance in a novel thermal environment.
Proc Natl Acad Sci U S A. 2014 Sep 30;111(39):14165-9. doi: 10.1073/pnas.1404885111. Epub 2014 Sep 15.
4
Testing the heat-invariant and cold-variability tolerance hypotheses across geographic gradients.
Comp Biochem Physiol A Mol Integr Physiol. 2014 Dec;178:46-50. doi: 10.1016/j.cbpa.2014.08.009. Epub 2014 Aug 23.
6
Mechanisms of reef coral resistance to future climate change.
Science. 2014 May 23;344(6186):895-8. doi: 10.1126/science.1251336. Epub 2014 Apr 24.
7
Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation.
Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):5610-5. doi: 10.1073/pnas.1316145111. Epub 2014 Mar 10.
8
Evolutionary stasis and lability in thermal physiology in a group of tropical lizards.
Proc Biol Sci. 2014 Jan 15;281(1778):20132433. doi: 10.1098/rspb.2013.2433. Print 2014 Mar 7.
9
Fish introductions reveal the temperature dependence of species interactions.
Proc Biol Sci. 2013 Dec 4;281(1775):20132641. doi: 10.1098/rspb.2013.2641. Print 2014 Jan 22.
10
Changes in ecologically critical terrestrial climate conditions.
Science. 2013 Aug 2;341(6145):486-92. doi: 10.1126/science.1237123.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验