Kakizoe Yusuke, Nakaoka Shinji, Beauchemin Catherine A A, Morita Satoru, Mori Hiromi, Igarashi Tatsuhiko, Aihara Kazuyuki, Miura Tomoyuki, Iwami Shingo
Department of Biology, Kyushu University, Fukuoka 812-8581, Japan.
Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
Sci Rep. 2015 May 21;5:10371. doi: 10.1038/srep10371.
The time elapsed between successful cell infection and the start of virus production is called the eclipse phase. Its duration is specific to each virus strain and, along with an effective virus production rate, plays a key role in infection kinetics. How the eclipse phase varies amongst cells infected with the same virus strain and therefore how best to mathematically represent its duration is not clear. Most mathematical models either neglect this phase or assume it is exponentially distributed, such that at least some if not all cells can produce virus immediately upon infection. Biologically, this is unrealistic (one must allow for the translation, transcription, export, etc. to take place), but could be appropriate if the duration of the eclipse phase is negligible on the time-scale of the infection. If it is not, however, ignoring this delay affects the accuracy of the mathematical model, its parameter estimates, and predictions. Here, we introduce a new approach, consisting in a carefully designed experiment and simple analytical expressions, to determine the duration and distribution of the eclipse phase in vitro. We find that the eclipse phase of SHIV-KS661 lasts on average one day and is consistent with an Erlang distribution.
从细胞成功感染到开始产生病毒之间所经过的时间称为隐蔽期。其持续时间因病毒株而异,并且与有效的病毒产生速率一起,在感染动力学中起着关键作用。同一病毒株感染的细胞之间隐蔽期如何变化,以及如何最好地用数学方法表示其持续时间尚不清楚。大多数数学模型要么忽略这个阶段,要么假定它呈指数分布,这样至少部分(如果不是全部)细胞在感染后能立即产生病毒。从生物学角度来看,这是不现实的(必须考虑翻译、转录、输出等过程的发生),但如果隐蔽期的持续时间在感染时间尺度上可以忽略不计,那么这种假设可能是合适的。然而,如果不能忽略,那么忽略这种延迟会影响数学模型的准确性、其参数估计和预测。在这里,我们引入一种新方法,该方法包括精心设计的实验和简单的解析表达式,用于在体外确定隐蔽期的持续时间和分布。我们发现,SHIV-KS661的隐蔽期平均持续一天,并且符合爱尔朗分布。