Suppr超能文献

使用化学助剂来控制细胞色素P450酶,以实现底物未活化碳氢键的可预测氧化反应。

Use of chemical auxiliaries to control p450 enzymes for predictable oxidations at unactivated C-h bonds of substrates.

作者信息

Auclair Karine, Polic Vanja

机构信息

Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A0B8, Canada,

出版信息

Adv Exp Med Biol. 2015;851:209-28. doi: 10.1007/978-3-319-16009-2_8.

Abstract

Cytochrome P450 enzymes (P450s) have the ability to oxidize unactivated C-H bonds of substrates with remarkable regio- and stereoselectivity. Comparable selectivity for chemical oxidizing agents is typically difficult to achieve. Hence, there is an interest in exploiting P450s as potential biocatalysts. Despite their impressive attributes, the current use of P450s as biocatalysts is limited. While bacterial P450 enzymes typically show higher activity, they tend to be highly selective for one or a few substrates. On the other hand, mammalian P450s, especially the drug-metabolizing enzymes, display astonishing substrate promiscuity. However, product prediction continues to be challenging. This review discusses the use of small molecules for controlling P450 substrate specificity and product selectivity. The focus will be on two approaches in the area: (1) the use of decoy molecules, and (2) the application of substrate engineering to control oxidation by the enzyme.

摘要

细胞色素P450酶(P450s)能够以显著的区域和立体选择性氧化底物中未活化的碳氢键。对于化学氧化剂而言,通常难以实现类似的选择性。因此,人们对利用P450s作为潜在的生物催化剂很感兴趣。尽管P450s具有令人印象深刻的特性,但目前将其用作生物催化剂的应用仍然有限。虽然细菌P450酶通常表现出较高的活性,但它们往往对一种或几种底物具有高度选择性。另一方面,哺乳动物P450s,尤其是药物代谢酶,表现出惊人的底物混杂性。然而,产物预测仍然具有挑战性。本综述讨论了使用小分子来控制P450底物特异性和产物选择性。重点将放在该领域的两种方法上:(1)使用诱饵分子,以及(2)应用底物工程来控制酶的氧化作用。

相似文献

2
Controlling substrate specificity and product regio- and stereo-selectivities of P450 enzymes without mutagenesis.
Bioorg Med Chem. 2014 Oct 15;22(20):5547-54. doi: 10.1016/j.bmc.2014.06.034. Epub 2014 Jun 25.
3
Strategies for Substrate-Regulated P450 Catalysis: From Substrate Engineering to Co-catalysis.
Chemistry. 2019 May 17;25(28):6853-6863. doi: 10.1002/chem.201806383. Epub 2019 Mar 15.
5
Monooxygenation of small hydrocarbons catalyzed by bacterial cytochrome p450s.
Adv Exp Med Biol. 2015;851:189-208. doi: 10.1007/978-3-319-16009-2_7.
6
Applications of microbial cytochrome P450 enzymes in biotechnology and synthetic biology.
Curr Opin Chem Biol. 2016 Apr;31:136-45. doi: 10.1016/j.cbpa.2016.02.018. Epub 2016 Mar 22.
7
Hoodwinking Cytochrome P450BM3 into Hydroxylating Non-Native Substrates by Exploiting Its Substrate Misrecognition.
Acc Chem Res. 2019 Apr 16;52(4):925-934. doi: 10.1021/acs.accounts.8b00651. Epub 2019 Mar 19.
8
P450 fingerprinting method for rapid discovery of terpene hydroxylating P450 catalysts with diversified regioselectivity.
J Am Chem Soc. 2011 Mar 16;133(10):3242-5. doi: 10.1021/ja109590h. Epub 2011 Feb 22.
9
Key mutations alter the cytochrome P450 BM3 conformational landscape and remove inherent substrate bias.
J Biol Chem. 2013 Aug 30;288(35):25387-25399. doi: 10.1074/jbc.M113.479717. Epub 2013 Jul 3.

本文引用的文献

1
Highly selective hydroxylation of benzene to phenol by wild-type cytochrome P450BM3 assisted by decoy molecules.
Angew Chem Int Ed Engl. 2013 Jun 24;52(26):6606-10. doi: 10.1002/anie.201300282. Epub 2013 May 6.
2
What makes a P450 tick?
Trends Biochem Sci. 2013 Mar;38(3):140-50. doi: 10.1016/j.tibs.2012.11.006. Epub 2013 Jan 26.
3
Type II ligands as chemical auxiliaries to favor enzymatic transformations by P450 2E1.
Chembiochem. 2012 Nov 26;13(17):2527-36. doi: 10.1002/cbic.201200524. Epub 2012 Nov 5.
4
C-H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals.
Angew Chem Int Ed Engl. 2012 Sep 3;51(36):8960-9009. doi: 10.1002/anie.201201666. Epub 2012 Aug 6.
5
Diversity of P450 enzymes in the biosynthesis of natural products.
Nat Prod Rep. 2012 Oct;29(10):1251-66. doi: 10.1039/c2np20020a. Epub 2012 Jul 23.
7
The effects of nitrogen-heme-iron coordination on substrate affinities for cytochrome P450 2E1.
Chem Biol Interact. 2011 Aug 15;193(1):50-6. doi: 10.1016/j.cbi.2011.05.001. Epub 2011 May 10.
8
The kinetic mechanism for cytochrome P450 metabolism of type II binding compounds: evidence supporting direct reduction.
Arch Biochem Biophys. 2011 Jul;511(1-2):69-79. doi: 10.1016/j.abb.2011.04.008. Epub 2011 Apr 21.
9
Predictable stereoselective and chemoselective hydroxylations and epoxidations with P450 3A4.
J Am Chem Soc. 2011 May 25;133(20):7853-8. doi: 10.1021/ja200551y. Epub 2011 Apr 29.
10
Use of perfluorocarboxylic acids to trick cytochrome P450BM3 into initiating the hydroxylation of gaseous alkanes.
Angew Chem Int Ed Engl. 2011 May 27;50(23):5315-8. doi: 10.1002/anie.201007975. Epub 2011 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验