Suppr超能文献

晶状体纤维化。Sprouty对转化生长因子β信号的调节可防止晶状体上皮-间质转化,从而预防白内障。

Fibrosis in the lens. Sprouty regulation of TGFβ-signaling prevents lens EMT leading to cataract.

作者信息

Lovicu F J, Shin E H, McAvoy J W

机构信息

Discipline of Anatomy and Histology, Bosch Institute, School of Medical Sciences, University of Sydney, 2006, NSW, Australia; Save Sight Institute, University of Sydney, Sydney 2001, NSW, Australia.

Discipline of Anatomy and Histology, Bosch Institute, School of Medical Sciences, University of Sydney, 2006, NSW, Australia.

出版信息

Exp Eye Res. 2016 Jan;142:92-101. doi: 10.1016/j.exer.2015.02.004. Epub 2015 May 21.

Abstract

Cataract is a common age-related condition that is caused by progressive clouding of the normally clear lens. Cataract can be effectively treated by surgery; however, like any surgery, there can be complications and the development of a secondary cataract, known as posterior capsule opacification (PCO), is the most common. PCO is caused by aberrant growth of lens epithelial cells that are left behind in the capsular bag after surgical removal of the fiber mass. An epithelial-to-mesenchymal transition (EMT) is central to fibrotic PCO and forms of fibrotic cataract, including anterior/posterior polar cataracts. Transforming growth factor β (TGFβ) has been shown to induce lens EMT and consequently research has focused on identifying ways of blocking its action. Intriguingly, recent studies in animal models have shown that EMT and cataract developed when a class of negative-feedback regulators, Sprouty (Spry)1 and Spry2, were conditionally deleted from the lens. Members of the Spry family act as general antagonists of the receptor tyrosine kinase (RTK)-mediated MAPK signaling pathway that is involved in many physiological and developmental processes. As the ERK/MAPK signaling pathway is a well established target of Spry proteins, and overexpression of Spry can block aberrant TGFβ-Smad signaling responsible for EMT and anterior subcapsular cataract, this indicates a role for the ERK/MAPK pathway in TGFβ-induced EMT. Given this and other supporting evidence, a case is made for focusing on RTK antagonists, such as Spry, for cataract prevention. In addition, and looking to the future, this review also looks at possibilities for supplanting EMT with normal fiber differentiation and thereby promoting lens regenerative processes after cataract surgery. Whilst it is now known that the epithelial to fiber differentiation process is driven by FGF, little is known about factors that coordinate the precise assembly of fibers into a functional lens. However, recent research provides key insights into an FGF-activated mechanism intrinsic to the lens that involves interactions between the Wnt-Frizzled and Jagged/Notch signaling pathways. This reciprocal epithelial-fiber cell interaction appears to be critical for the assembly and maintenance of the highly ordered three-dimensional architecture that is central to lens function. This information is fundamental to defining the specific conditions and stimuli needed to recapitulate developmental programs and promote regeneration of lens structure and function after cataract surgery.

摘要

白内障是一种常见的与年龄相关的病症,由正常透明晶状体的渐进性混浊引起。白内障可通过手术有效治疗;然而,与任何手术一样,可能会出现并发症,继发性白内障的形成,即后囊膜混浊(PCO),是最常见的。PCO是由手术切除纤维团块后留在囊袋中的晶状体上皮细胞异常生长引起的。上皮-间充质转化(EMT)是纤维化PCO和纤维化白内障(包括前/后极性白内障)形成的核心。已表明转化生长因子β(TGFβ)可诱导晶状体EMT,因此研究集中在确定阻断其作用的方法上。有趣的是,最近在动物模型中的研究表明,当一类负反馈调节因子Sprouty(Spry)1和Spry2在晶状体中被条件性缺失时,会发生EMT和白内障。Spry家族成员作为受体酪氨酸激酶(RTK)介导的MAPK信号通路的一般拮抗剂,该信号通路参与许多生理和发育过程。由于ERK/MAPK信号通路是Spry蛋白的一个既定靶点,并且Spry的过表达可以阻断负责EMT和前囊下白内障的异常TGFβ-Smad信号传导,这表明ERK/MAPK通路在TGFβ诱导的EMT中起作用。鉴于此及其他支持证据,有理由关注RTK拮抗剂,如Spry,用于预防白内障。此外,展望未来,本综述还探讨了用正常纤维分化替代EMT从而促进白内障手术后晶状体再生过程的可能性。虽然现在已知上皮到纤维的分化过程由FGF驱动,但对于协调纤维精确组装成功能性晶状体的因素知之甚少。然而,最近的研究为晶状体固有的FGF激活机制提供了关键见解,该机制涉及Wnt-Frizzled和Jagged/Notch信号通路之间的相互作用。这种上皮-纤维细胞的相互作用似乎对于高度有序的三维结构的组装和维持至关重要,而这种结构是晶状体功能的核心。这些信息对于确定重现发育程序以及促进白内障手术后晶状体结构和功能再生所需的特定条件和刺激至关重要。

相似文献

1
Fibrosis in the lens. Sprouty regulation of TGFβ-signaling prevents lens EMT leading to cataract.
Exp Eye Res. 2016 Jan;142:92-101. doi: 10.1016/j.exer.2015.02.004. Epub 2015 May 21.
2
Negative regulation of TGFβ-induced lens epithelial to mesenchymal transition (EMT) by RTK antagonists.
Exp Eye Res. 2015 Mar;132:9-16. doi: 10.1016/j.exer.2015.01.001. Epub 2015 Jan 7.
3
Sprouty and Spred temporally regulate ERK1/2-signaling to suppress TGFβ-induced lens EMT.
Exp Eye Res. 2022 Jun;219:109070. doi: 10.1016/j.exer.2022.109070. Epub 2022 Apr 9.
9
Sprouty2 Suppresses Epithelial-Mesenchymal Transition of Human Lens Epithelial Cells through Blockade of Smad2 and ERK1/2 Pathways.
PLoS One. 2016 Jul 14;11(7):e0159275. doi: 10.1371/journal.pone.0159275. eCollection 2016.
10
Enhanced EGF receptor-signaling potentiates TGFβ-induced lens epithelial-mesenchymal transition.
Exp Eye Res. 2019 Aug;185:107693. doi: 10.1016/j.exer.2019.107693. Epub 2019 Jun 12.

引用本文的文献

4
Skullcapflavone II suppresses TGF-β-induced corneal epithelial mesenchymal transition .
Int J Ophthalmol. 2025 Feb 18;18(2):209-215. doi: 10.18240/ijo.2025.02.02. eCollection 2025.
6
8
[Conbercept reverses TGF-β-induced epithelial-mesenchymal transition in human lens epithelial cells by regulating the TGF-β/Smad signaling pathway].
Nan Fang Yi Ke Da Xue Xue Bao. 2024 Aug 20;44(8):1459-1466. doi: 10.12122/j.issn.1673-4254.2024.08.04.
9
Consilience and unity in ocular anterior segment research.
Int J Ophthalmol. 2024 Jul 18;17(7):1173-1183. doi: 10.18240/ijo.2024.07.01. eCollection 2024.
10
GDF-15 Attenuates the Epithelium-Mesenchymal Transition and Alleviates TGFβ2-Induced Lens Opacity.
Transl Vis Sci Technol. 2024 Jul 1;13(7):2. doi: 10.1167/tvst.13.7.2.

本文引用的文献

2
The cellular and molecular mechanisms of vertebrate lens development.
Development. 2014 Dec;141(23):4432-47. doi: 10.1242/dev.107953. Epub 2014 Nov 18.
5
MiRNA-26b inhibits the proliferation, migration, and epithelial-mesenchymal transition of lens epithelial cells.
Mol Cell Biochem. 2014 Nov;396(1-2):229-38. doi: 10.1007/s11010-014-2158-4. Epub 2014 Jul 26.
6
Matrix metalloproteinase-9-null mice are resistant to TGF-β-induced anterior subcapsular cataract formation.
Am J Pathol. 2014 Jul;184(7):2001-12. doi: 10.1016/j.ajpath.2014.03.013. Epub 2014 May 6.
7
TGF-β2 induces transdifferentiation and fibrosis in human lens epithelial cells via regulating gremlin and CTGF.
Biochem Biophys Res Commun. 2014 May 16;447(4):689-95. doi: 10.1016/j.bbrc.2014.04.068. Epub 2014 Apr 19.
8
The roles of αV integrins in lens EMT and posterior capsular opacification.
J Cell Mol Med. 2014 Apr;18(4):656-70. doi: 10.1111/jcmm.12213. Epub 2014 Feb 4.
9
Old proteins and the Achilles heel of mass spectrometry. The role of proteomics in the etiology of human cataract.
Proteomics Clin Appl. 2014 Apr;8(3-4):195-203. doi: 10.1002/prca.201300044. Epub 2014 Mar 7.
10
Interactions between lens epithelial and fiber cells reveal an intrinsic self-assembly mechanism.
Dev Biol. 2014 Jan 15;385(2):291-303. doi: 10.1016/j.ydbio.2013.10.030. Epub 2013 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验